Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 287(33): 28067-77, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22718766

RESUMEN

Pulmonary artery hypertension (PAH) patients exhibit elevated levels of inflammatory cytokines and infiltration of inflammatory cells in the lung. Concurrently, mutations of bmpr2, the gene encoding the type II receptor of bone morphogenetic proteins (BMP), are found in ∼75% of patients with familial PAH, but a possible nexus between increased inflammation and diminished BMP signaling has hitherto remained elusive. We previously showed that BMP4 triggers nuclear localization of the Myocardin-related transcription factor A (MRTF-A) in human pulmonary artery smooth muscle cells (PASMC), resulting in the induction of contractile proteins. Here we report the BMPR2-dependent repression of a set of inflammatory mediators in response to BMP4 stimulation of PASMC. Forced expression of MRTF-A precisely emulates the anti-inflammatory effect of BMP4, while MRTF-A depletion precludes BMP4-mediated cytokine inhibition. BMP4 and MRTF-A block signaling through NF-κB, the keystone of most pathways leading to inflammatory responses, at the level of chromatin recruitment and promoter activation. Moreover, MRTF-A physically interacts with RelA/p65, the NF-κB subunit endowed with a transcription activation domain. Interestingly, the MRTF-A-NF-κB interaction is mutually antagonistic: stimulation of NF-κB signaling by TNFα, as well as p65 overexpression, hinders MRTF-A activity and the expression of contractile genes. Thus, a molecular inhibitory pathway linking BMP4 signaling, activation of MRTF-A, and inhibition of NF-κB provides insights into the etiology of PAH and a potential focus of therapeutic intervention.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Proteínas de Unión al ADN/metabolismo , Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Transducción de Señal , Proteína Morfogenética Ósea 4/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/genética , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/terapia , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas de Fusión Oncogénica/genética , Transactivadores , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
2.
Thromb Haemost ; 111(1): 140-53, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24136115

RESUMEN

Matrix metalloproteinase (MMP) activity is generally associated with normal or pathological extracellular processes such as tissue remodelling in growth and development or in tumor metastasis and angiogenesis. Platelets contain at least three MMPs, 1, 2 and 9 that have been reported to stimulate or inhibit agonist-induced platelet aggregation via extracellular signals. The non-selective Zn+2 chelating MMP inhibitor, 1,10-phenanthroline, and the serine protease inhibitor, AEBSF, were found to inhibit all tested agonist-induced platelet aggregation reactions. In vitro analysis demonstrated that 1,10-phenanthroline completely inhibited MMP-1,2,and 9 but had little to no effect on calpain activity while the converse was true with AEBSF. We now demonstrate that MMP-2 functions intracellularly to regulate agonist-induced platelet aggregations via the hydrolytic activation of talin, the presumed final activating factor of glycoprotein (GP)IIb/IIIa integrin (the inside-out signal). Once activated GPIIb/IIIa binds the dimeric fibrinogen molecule required for platelet aggregation. The active intracellular MMP-2 molecule is complexed with JAK 2/STAT 3, as demonstrated by the fact that all three proteins are co-immunoprecipitated with either anti-JAK 2, or anti-STAT 3 antibodies and by immunofluorescence studies. The MMP-2 platelet activation pathway can be synergistically inhibited with the non-selective MMP inhibitor, 1,10-phenanthroline, plus a JAK 2 inhibitor. This activation pathway is distinct from the previously reported calpain-talin activating pathway. The identification of a new central pathway for platelet aggregation presents new potential targets for drug regulation and furthers our understanding of the complexity of platelet activation mechanisms.


Asunto(s)
Plaquetas/efectos de los fármacos , Regulación de la Expresión Génica , Metaloproteinasa 2 de la Matriz/metabolismo , Activación Plaquetaria , Talina/metabolismo , Adulto , Sitios de Unión , Plaquetas/metabolismo , Calpaína/metabolismo , Quelantes/química , Dimerización , Humanos , Hidrólisis , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Fenantrolinas/química , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Factores de Tiempo , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA