Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(8): 2033-2052.e21, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765443

RESUMEN

Metastasis is the leading cause of cancer-related deaths, and greater knowledge of the metastatic microenvironment is necessary to effectively target this process. Microenvironmental changes occur at distant sites prior to clinically detectable metastatic disease; however, the key niche regulatory signals during metastatic progression remain poorly characterized. Here, we identify a core immune suppression gene signature in pre-metastatic niche formation that is expressed predominantly by myeloid cells. We target this immune suppression program by utilizing genetically engineered myeloid cells (GEMys) to deliver IL-12 to modulate the metastatic microenvironment. Our data demonstrate that IL12-GEMy treatment reverses immune suppression in the pre-metastatic niche by activating antigen presentation and T cell activation, resulting in reduced metastatic and primary tumor burden and improved survival of tumor-bearing mice. We demonstrate that IL12-GEMys can functionally modulate the core program of immune suppression in the pre-metastatic niche to successfully rebalance the dysregulated metastatic microenvironment in cancer.


Asunto(s)
Terapia de Inmunosupresión , Células Mieloides/metabolismo , Inmunidad Adaptativa , Animales , Línea Celular Tumoral , Ingeniería Genética , Humanos , Interleucina-12/genética , Interleucina-12/metabolismo , Pulmón/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/citología , Células Mieloides/inmunología , Metástasis de la Neoplasia , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Tasa de Supervivencia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral
2.
Blood ; 141(6): 659-672, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36201744

RESUMEN

Relapse limits the therapeutic efficacy both of chimeric antigen receptor (CAR) T cells and allogeneic hematopoietic cell transplantation (allo-HCT). Patients may undergo these therapies sequentially to prevent or treat relapsed malignancy. However, direct integration of the 2 therapies has been avoided over concerns for potential induction of graft-versus-host disease (GVHD) by allogeneic CAR T cells. We have shown in murine T-cell-replete MHC-haploidentical allo-HCT that suppressive mechanisms induced immediately after posttransplant cyclophosphamide (PTCy), given on days +3/+4, prevent GVHD induction by alloreactive T cells infused as early as day +5. Therefore, we hypothesized that allogeneic CAR T cells given in a similarly integrated manner in our murine MHC-haploidentical allo-HCT model may safely exert antitumor effects. Indeed, allogeneic anti-CD19 CAR T cells given early after (day +5) PTCy or even prior to (day 0) PTCy cleared leukemia without exacerbating the cytokine release syndrome occurring from the MHC-haploidentical allo-HCT or interfering with PTCy-mediated GVHD prevention. Meanwhile, CAR T-cell treatment on day +9 or day +14 was safe but less effective, suggesting a limited therapeutic window. CAR T cells infused before PTCy were not eliminated, but surviving CAR T cells continued to proliferate highly and expand despite PTCy. In comparison with infusion on day +5, CAR T-cell infusion on day 0 demonstrated superior clinical efficacy associated with earlier CAR T-cell expansion, higher phenotypic CAR T-cell activation, less CD4+CD25+Foxp3+ CAR T-cell recovery, and transcriptional changes suggesting increased activation of CD4+ CAR T cells and more cytotoxic CD8+ CAR T cells. This study provides mechanistic insight into PTCy's impact on graft-versus-tumor immunity and describes novel approaches to integrate CAR T cells and allo-HCT that may compensate for deficiencies of each individual approach.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Humanos , Ratones , Animales , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Linfocitos T CD4-Positivos/patología , Leucemia/tratamiento farmacológico
3.
Blood ; 140(5): 451-463, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35605184

RESUMEN

Remission durability following single-antigen targeted chimeric antigen receptor (CAR) T-cells is limited by antigen modulation, which may be overcome with combinatorial targeting. Building upon our experiences targeting CD19 and CD22 in B-cell acute lymphoblastic leukemia (B-ALL), we report on our phase 1 dose-escalation study of a novel murine stem cell virus (MSCV)-CD19/CD22-4-1BB bivalent CAR T-cell (CD19.22.BBζ) for children and young adults (CAYA) with B-cell malignancies. Primary objectives included toxicity and dose finding. Secondary objectives included response rates and relapse-free survival (RFS). Biologic correlatives included laboratory investigations, CAR T-cell expansion and cytokine profiling. Twenty patients, ages 5.4 to 34.6 years, with B-ALL received CD19.22.BBζ. The complete response (CR) rate was 60% (12 of 20) in the full cohort and 71.4% (10 of 14) in CAR-naïve patients. Ten (50%) developed cytokine release syndrome (CRS), with 3 (15%) having ≥ grade 3 CRS and only 1 experiencing neurotoxicity (grade 3). The 6- and 12-month RFS in those achieving CR was 80.8% (95% confidence interval [CI]: 42.4%-94.9%) and 57.7% (95% CI: 22.1%-81.9%), respectively. Limited CAR T-cell expansion and persistence of MSCV-CD19.22.BBζ compared with EF1α-CD22.BBζ prompted laboratory investigations comparing EF1α vs MSCV promoters, which did not reveal major differences. Limited CD22 targeting with CD19.22.BBζ, as evaluated by ex vivo cytokine secretion and leukemia eradication in humanized mice, led to development of a novel bicistronic CD19.28ζ/CD22.BBζ construct with enhanced cytokine production against CD22. With demonstrated safety and efficacy of CD19.22.BBζ in a heavily pretreated CAYA B-ALL cohort, further optimization of combinatorial antigen targeting serves to overcome identified limitations (www.clinicaltrials.gov #NCT03448393).


Asunto(s)
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Animales , Antígenos CD19 , Síndrome de Liberación de Citoquinas , Citocinas , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Recurrencia , Linfocitos T
4.
Blood ; 132(18): 1899-1910, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209120

RESUMEN

Adoptive transfer of patient-derived T cells modified to express chimeric antigen receptors (CARTs) has demonstrated dramatic success in relapsed/refractory pre-B-cell acute lymphoblastic leukemia (ALL), but response and durability of remission requires exponential CART expansion and persistence. Tumors are known to affect T-cell function, but this has not been well studied in ALL and in the context of chimeric antigen receptor (CAR) expression. Using TCF3/PBX1 and MLL-AF4-driven murine ALL models, we assessed the impact of progressive ALL on T-cell function in vivo. Vaccines protect against TCF3/PBX1.3 but were ineffective when administered after leukemia injection, suggesting immunosuppression induced early during ALL progression. T cells from leukemia-bearing mice exhibited increased expression of inhibitory receptors, including PD1, Tim3, and LAG3, and were dysfunctional following adoptive transfer in a model of T-cell receptor (TCR)-dependent leukemia clearance. Although expression of inhibitory receptors has been linked to TCR signaling, pre-B-cell ALL induced inhibitory receptor expression, at least in part, in a TCR-independent manner. Finally, introduction of a CAR into T cells generated from leukemia-bearing mice failed to fully reverse poor in vivo function.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Células Precursoras de Linfocitos B/patología , Linfocitos T/patología , Traslado Adoptivo/métodos , Animales , Vacunas contra el Cáncer/uso terapéutico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Ratones Endogámicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores Quiméricos de Antígenos/análisis
5.
Bioorg Med Chem Lett ; 30(22): 127534, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32898694

RESUMEN

The anti-neovascularization treatment is one of the effective strategies for tumor molecular target therapy. At present, the target and effect of the anti-neovascularization treatment is limited, and it is urgent to establish a new vascular targeting strategy to effectively treat tumors. In this work, we used high intensity focused ultrasound (HIFU) combined with targeted microbubbles to establish a molecular targeted ultrasound response microbubble for neovascular cells. Furthermore, the effects of drug loaded microbubbles on neovascularization and tumor cells were studied. The tumor vascular targeted and ultrasound-responsive microbubbles of 5-FU@DLL4-MBs were prepared by the thin-film dispersion method. The size and zeta potential of 5-FU@DLL4-MBs was about 1248 nm and -9.1 mV. 5-FU@DLL4-MBs released 5-FU showed an ultrasound-responsive manner, and had better vascular-targeting ability. Furthermore, the 5-FU@DLL4-MBs showed the strongest cytotoxic effect on HUVECs or HepG-2 cells and can be effectively internalized into the HUVECs cells. Thus, 5-FU@DLL4-MBs combined with HIFU can be considered as a potential method for antitumor angiogenesis in the future.


Asunto(s)
Antineoplásicos/farmacología , Fluorouracilo/farmacología , Microburbujas , Neovascularización Patológica/tratamiento farmacológico , Ultrasonografía , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fluorouracilo/química , Células Hep G2 , Humanos , Estructura Molecular , Neovascularización Patológica/patología , Tamaño de la Partícula , Relación Estructura-Actividad
6.
Mol Ther ; 27(7): 1262-1274, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31043341

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies have demonstrated impressive initial response rates in hematologic malignancies. However, relapse rates are significant, and robust efficacies in other indications, such as solid tumors, will likely require novel therapeutic strategies and CAR designs. To that end, we sought to develop simple, highly selective targeting domains (D domains) that could be incorporated into complex, multifunctional therapeutics. Herein, we describe the identification and characterization of D domains specific for CD123, a therapeutic target for hematologic malignancies, including acute myelogenous leukemia (AML). CARs comprised of these D domains mediate potent T cell activation and cytolysis of CD123-expressing target cells and induce complete durable remission in two AML xenograft models. We describe a strategy of engineering less immunogenic D domains through the identification and removal of putative T cell epitopes and investigate the binding kinetics and affinity requirements of the resultant D domain CARs. Finally, we extended the utility of D domains by generating functional, bi-specific CARs comprised of a CD123-specific D domain and a CD19-specific scFv. The properties of D domains suggest that this class of targeting domain may facilitate the development of multi-functional CARs where conventional, scFv-based designs may be suboptimal.


Asunto(s)
Antineoplásicos/uso terapéutico , Inmunoterapia Adoptiva/métodos , Subunidad alfa del Receptor de Interleucina-3/inmunología , Dominios Proteicos/inmunología , Proteínas/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T/inmunología , Animales , Antígenos CD19/inmunología , Antineoplásicos/inmunología , Epítopos de Linfocito T/inmunología , Células HEK293 , Humanos , Células K562 , Leucemia Mieloide Aguda/terapia , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Unión Proteica/inmunología , Proteínas/inmunología , Receptores Quiméricos de Antígenos/inmunología , Anticuerpos de Cadena Única/inmunología , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Blood ; 127(10): 1361-70, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26660684

RESUMEN

Acute lymphoblastic leukemia (ALL) persisting or relapsing following bone marrow transplantation (BMT) has a dismal prognosis. Success with chimeric antigen receptor (CAR) T cells offers an opportunity to treat these patients with leukemia-redirected donor-derived T cells, which may be more functional than T cells derived from patients with leukemia but have the potential to mediate graft-versus-host disease (GVHD). We, together with others, have previously demonstrated tumor-specific T-cell dysfunction in the allogeneic environment. Here, we studied CAR T-cell function following BMT using an immunocompetent murine model of minor mismatched allogeneic transplantation followed by donor-derived CD19-CAR T cells. Allogeneic donor-derived CD19-CAR T cells eliminated residual ALL with equal potency to those administered after syngeneic BMT. Surprisingly, allogeneic CAR T cells mediated lethal acute GVHD with early mortality, which is atypical for this minor mismatch model. We demonstrated that both allogeneic and syngeneic CAR T cells show initial expansion as effector T cells, with a higher peak but rapid deletion of allogeneic CAR T cells. Interestingly, CAR-mediated acute GVHD was only seen in the presence of leukemia, suggesting CAR-target interactions induced GVHD. Indeed, serum interleukin (IL)-6 was elevated only in the presence of both leukemia and CAR T cells, and IL-6 neutralization ameliorated the severity of GVHD in a delayed donor lymphocyte infusion model. Finally, allogeneic CD4(+) CAR T cells were responsible for GVHD, which correlated with their ability to produce IL-6 upon CAR stimulation. Altogether, we demonstrate that donor-derived allogeneic CAR T cells are active but have the capacity to drive GVHD.


Asunto(s)
Antígenos CD19/inmunología , Enfermedad Injerto contra Huésped/inmunología , Transfusión de Linfocitos , Neoplasias Experimentales/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Receptores Acoplados a Proteínas G/inmunología , Linfocitos T/inmunología , Aloinjertos , Animales , Antígenos CD19/genética , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/patología , Interleucina-6/genética , Interleucina-6/inmunología , Ratones , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores Sensibles al Calcio , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T/patología , Linfocitos T/trasplante
8.
Blood ; 128(4): 519-28, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27226436

RESUMEN

Long-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound and sustained tumor regression but their rareness poses a major hurdle to their clinical application. Presently, clinically compliant procedures to generate relevant numbers of this T-cell population are undefined. Here, we provide a strategy for deriving large numbers of clinical-grade tumor-redirected TSCM starting from naive precursors. CD8(+)CD62L(+)CD45RA(+) naive T cells enriched by streptamer-based serial-positive selection were activated by CD3/CD28 engagement in the presence of interleukin-7 (IL-7), IL-21, and the glycogen synthase-3ß inhibitor TWS119, and genetically engineered to express a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions enabled the generation of CD19-CAR-modified CD8(+) TSCM that were phenotypically, functionally, and transcriptomically equivalent to their naturally occurring counterpart. Compared with CD8(+) T cells generated with clinical protocols currently under investigation, CD19-CAR-modified CD8(+) TSCM exhibited enhanced metabolic fitness and mediated robust, long-lasting antitumor responses against systemic acute lymphoblastic leukemia xenografts. This clinical-grade platform provides the basis for a phase 1 trial evaluating the activity of CD19-CAR-modified CD8(+) TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell transplantation.


Asunto(s)
Traslado Adoptivo , Antígenos CD19/inmunología , Linfocitos B/inmunología , Linfocitos T CD8-positivos/trasplante , Neoplasias Hematológicas/terapia , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Antígenos CD19/genética , Linfocitos B/patología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/inmunología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptores de Antígenos de Linfocitos T/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Ultrasound Med ; 37(3): 577-583, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28887861

RESUMEN

OBJECTIVES: This study aimed to explore the feasibility and safety of intratumoral radiofrequency ablation (RFA) in meningioma resection. METHODS: This study was approved by the Xijing Ethics Committee, and informed consent was obtained from all of the patients. Thirteen patients with meningiomas were recruited in the Neurosurgery Department of Xijing Hospital. These patients were treated with intratumoral RFA and surgery. We also chose 13 patients with meningiomas treated with traditional surgery as the control group. Two-dimensional ultrasound, color Doppler flow imaging, contrast-enhanced ultrasound, and magnetic resonance imaging were used to identify the location, border, and blood supply of the meningiomas preoperatively and to assess the therapeutic effect intraoperatively. Finally, the meningiomas were dissected and removed by surgery. RESULTS: All procedures were technically successful without serious complications. Intraoperative ultrasound was able to provide a clear display of the location, shape, size, and boundary of the tumor and its relationship with other tissues and reveal the vascular distribution in and around the tumors. With intratumoral RFA, coagulative necrosis was induced, and the meningiomas became hard in texture with a decreased blood supply. Blood loss was significantly lower in the RFA group versus control group (320.0 ± 24.8 versus 390.4 ± 36.8 mL; P < .001). The RFA group spent fewer days in the hospital (6.0 ± 0.9 versus 7.0 ± 1.2 days; P = .022). However, the surgical time of the RFA group was relatively longer (3.5 ± 0.5 versus 3.0 ± 0.3 hours, P = .007). CONCLUSIONS: The application of intratumoral RFA in meningioma resection is effective and safe. It may be a useful adjunct for meningioma treatment.


Asunto(s)
Ablación por Catéter/métodos , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Ultrasonografía Intervencional/métodos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
10.
Blood ; 126(5): 629-39, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26041741

RESUMEN

Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting the CD19 B cell-associated protein have demonstrated potent activity against relapsed/refractory B-lineage acute lymphoblastic leukemia (B-ALL). Not all patients respond, and CD19-negative relapses have been observed. Overexpression of the thymic stromal lymphopoietin receptor (TSLPR; encoded by CRLF2) occurs in a subset of adults and children with B-ALL and confers a high risk of relapse. Recent data suggest the TSLPR signaling axis is functionally important, suggesting that TSLPR would be an ideal immunotherapeutic target. We constructed short and long CARs targeting TSLPR and tested efficacy against CRLF2-overexpressing B-ALL. Both CARs demonstrated activity in vitro, but only short TSLPR CAR T cells mediated leukemia regression. In vivo activity of the short CAR was also associated with long-term persistence of CAR-expressing T cells. Short TSLPR CAR treatment of mice engrafted with a TSLPR-expressing ALL cell line induced leukemia cytotoxicity with efficacy comparable with that of CD19 CAR T cells. Short TSLPR CAR T cells also eradicated leukemia in 4 xenograft models of human CRLF2-overexpressing ALL. Finally, TSLPR has limited surface expression on normal tissues. TSLPR-targeted CAR T cells thus represent a potent oncoprotein-targeted immunotherapy for high-risk ALL.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Citocinas/antagonistas & inhibidores , Linfocitos T/inmunología , Animales , Antígenos CD19/metabolismo , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Phys Chem Chem Phys ; 19(45): 30749-30755, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29125605

RESUMEN

Transition metal-based composites are one of the most important electrocatalysts because of their rich redox chemistry. The reaction kinetics of a redox couple is dependent on the chemical valence and is a key issue in electrocatalytic performance. In this study, a metallic Co catalyst was synthesized by pyrolyzing Co(OH)2. The effect of the chemical valence of Co on the oxygen reduction reaction (ORR) was investigated by comparing the electrocatalytic properties of three Co-based catalysts containing Co0, Co2+, and Co3+. The electrocatalytic properties were evaluated mainly by linear scan voltammetry (LSV) and a direct borohydride fuel cell (DBFC) where the Co-based catalysts were used as cathodes. The LSV results show that the ORR peak current density increases with a decrease in chemical valence. The DBFC with the Co0 cathode exhibits highest power density and good durability. In situ X-ray diffraction combined with in situ X-ray absorption fine structure tests was carried out to reveal the dynamic microstructure evolution of the Co0 cathode during ORR. The in situ results clearly demonstrate the evolution of metallic Co to Co(OH)2 and then to CoOOH during the ORR.

12.
Blood ; 124(12): 1976-86, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25079358

RESUMEN

Selective targeting of non-T cells, including antigen-presenting cells (APCs), is a potential strategy to prevent graft-versus-host-disease (GVHD) but to maintain graft-versus-tumor (GVT) effects. Because type I and II interferons signal through signal transducer and activator of transcription-1 (STAT1), and contribute to activation of APCs after allogeneic bone marrow transplant (alloBMT), we examined whether the absence of STAT1 in donor APCs could prevent GVHD while preserving immune competence. Transplantation of STAT1(-/-) bone marrow (BM) prevented GVHD induced by STAT1(+/+) T cells, leading to expansion of B220(+) cells and regulatory T cells. STAT1(-/-) BM also preserved GVT activity and enhanced overall survival of tumor-challenged mice in the setting of GVHD. Furthermore, recipients of allogeneic STAT1(-/-) BM demonstrated increased CD9(-)Siglec H(hi) plasmacytoid dendritic cells (pDCs), and depletion of pDCs after STAT1(-/-) BM transplantation prevented GVHD resistance. STAT1(-/-) pDCs were found to produce decreased free radicals, IFNα, and interleukin (IL)-12, and increased IL-10. Additionally, STAT1(-/-) pDCs that were isolated after alloBMT showed increased gene expression of S100A8 and S100A9, and transplantation of S100A9(-/-) BM reduced GVHD-free survival. Finally, elevated STAT3 was found in STAT1(-/-) pDCs isolated after alloBMT. We conclude that interfering with interferon signaling in APCs such as pDCs provides a novel approach to regulate the GVHD/GVT axis.


Asunto(s)
Células Dendríticas/metabolismo , Células Dendríticas/trasplante , Enfermedad Injerto contra Huésped/prevención & control , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT3/metabolismo , Aloinjertos , Animales , Trasplante de Médula Ósea/efectos adversos , Calgranulina A/genética , Calgranulina B/genética , Calgranulina B/metabolismo , Células Dendríticas/inmunología , Femenino , Expresión Génica , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor de Transcripción STAT1/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Donantes de Tejidos
13.
Lasers Med Sci ; 31(4): 645-51, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26861985

RESUMEN

Surgical myectomy and ethanol ablation are established intervention strategies for left ventricular outflow obstruction in hypertrophic cardiomyopathy. Safety and efficacy limitations of these interventions call for a minimally invasive, potentially safer, and more efficacious strategy. In this study, we aimed to evaluate the feasibility of echocardiography-guided percutaneous per-ventricular laser ablation of a ventricular septum in a canine model. Six domestic dogs were chosen for the study. A 21G needle was inserted into the right ventricle with its tip reaching the targeted basal to mid-septum, after which laser ablation was performed as follows: 1-W laser for 3 min (180 J) at the basal segment and 5 min (300 J) at middle segment of the septum, respectively. Echocardiography, blood chemistry tests, and pathology examination were performed to assess the results of laser ablation. No death or major complications, i.e., tamponade, pericardial effusion, or ventricular fibrillation, occurred. The laser-ablated areas were well demarcated in the results of the pathological examination. The diameters of the ablated regions were 4.42 ± 0.57 and 5.28 ± 0.83 mm for 3 and 5 min ablation, respectively. Pre-ablation and post-ablation, cardiac enzymes were found to increase significantly while no significant differences were found among M-mode, 2D (LVEF), pulsed-wave (PW) Doppler, and tissue Doppler imaging (TDI) measurements. Contrast echocardiography confirmed the perfusion defects in the ablated regions. Microscopically, the ablated myocardium showed coagulative changes and a sparse distribution of disappearing nuclei and an increase in eosinophil number were observed. Our study suggests that percutaneous and per-ventricular laser ablation of the septum is feasible, potentially safe and efficacious, and warrants further investigation and validation.


Asunto(s)
Cardiomiopatía Hipertrófica/cirugía , Terapia por Láser , Láseres de Estado Sólido , Obstrucción del Flujo Ventricular Externo/cirugía , Animales , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Ablación por Catéter/métodos , Perros , Ecocardiografía , Cirugía Asistida por Computador , Obstrucción del Flujo Ventricular Externo/diagnóstico por imagen , Tabique Interventricular/cirugía
14.
Phys Chem Chem Phys ; 17(5): 3919, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25531556

RESUMEN

Correction for 'In situ study of the catalytic mechanism for the oxygen reduction reaction on a polypyrrole modified carbon supported cobalt hydroxide cathode in direct borohydride fuel cells' by Haiying Qin et al., Phys. Chem. Chem. Phys., 2013, 15, 9070-9074.

15.
Biol Blood Marrow Transplant ; 20(1): 26-36, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24141010

RESUMEN

The clinical success of allogeneic T cell therapy for cancer relies on the selection of antigens that can effectively elicit antitumor responses with minimal toxicity toward nonmalignant tissues. Although minor histocompatibility antigens (MiHA) represent promising targets, broad expression of these antigens has been associated with poor responses and T cell dysfunction that may not be prevented by targeting MiHA with limited expression. In this study, we hypothesized that antitumor activity of MiHA-specific CD8 T cells after allogeneic bone marrow transplantation (BMT) is determined by the distribution of antigen relative to the site of tumor growth. To test this hypothesis, we utilized the clinically relevant male-specific antigen HY and studied the fate of adoptively transferred, HY-CD8(+) T cells (HY-CD8) against a HY-expressing epithelial tumor (MB49) and pre-B cell leukemia (HY-E2APBX ALL) in BMT recipients. Transplants were designed to produce broad HY expression in nonhematopoietic tissues (female → male BMT, [F → M]), restricted HY expression in hematopoietic tissues (male → female BMT, [M → F]) tissues, and no HY tissue expression (female → female BMT, [F → F]). Broad HY expression induced poor responses to MB49 despite sublethal graft-versus-host disease and accumulation of HY-CD8 in secondary lymphoid tissues. Antileukemia responses, however, were preserved. In contrast, restriction of HY expression to hematopoietic tissues restored MB49 responses but resulted in a loss of antileukemia responses. We concluded that target alloantigen expression in the same compartment of tumor growth impairs CD8 responses to both solid and hematologic tumors.


Asunto(s)
Trasplante de Médula Ósea , Linfocitos T CD8-positivos/inmunología , Enfermedad Injerto contra Huésped/inmunología , Efecto Injerto vs Leucemia , Antígeno H-Y/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Traslado Adoptivo , Alelos , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/trasplante , Proliferación Celular , Células Dendríticas/inmunología , Células Dendríticas/patología , Femenino , Expresión Génica/inmunología , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/mortalidad , Enfermedad Injerto contra Huésped/patología , Antígeno H-Y/genética , Humanos , Inmunofenotipificación , Depleción Linfocítica , Masculino , Ratones , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Células Precursoras de Linfocitos B/inmunología , Células Precursoras de Linfocitos B/patología , Análisis de Supervivencia
16.
Curr Med Imaging ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38874024

RESUMEN

BACKGROUND: Ultrasound-guided microwave ablation (MWA) is recommended as a first-line treatment for early liver cancer due to its minimally invasive, efficient, and cost-effective nature. It utilizes microwave radiation to heat and destroy tumor cells as a local thermal therapy and offers the benefits of being minimally invasive, repeatable, and applicable to tumors of various sizes and locations. However, despite the efficacy of MWA, early recurrence after treatment remains a challenge, particularly when it occurs within a year and has a significant impact on the prognosis of the patient. OBJECTIVE: This study aimed to identify the risk factors for early recurrence after MWA in patients with hepatocellular carcinoma (HCC) and establish a predictive model. METHODS: A total of 119 patients with hepatocellular carcinoma (HCC) treated in the Department of Ultrasound at the First Affiliated Hospital of the Air Force Medical University from January, 2020 to April, 2022 were included in this study. Patients were categorized into the early recurrence group and the non-early recurrence group based on whether recurrence occurred within 1 year. We conducted univariate analysis on 29 variables. A predictive model was developed using multiple-factor logistic regression analysis, and a risk column graph was created. RESULTS: A total of 28 patients were included in the early recurrence group, with an early recurrence rate of 23%. Tumor size ≥ 3cm, multiple tumors, AST > 35 U/L, low pathological differentiation, CD34 positive, Ki67 level, quantitative parameters mean transit time (mTT), and rise time (RT) were confirmed as risk factors affecting early recurrence after ablation (P < 0.05). Furthermore, the model constructed based on these 5 predictive factors, including tumor size, tumor number, pathological differentiation, CD34, and quantitative analysis parameter mTT, demonstrated good predictive ability, with an AUC of 0.93 in the training set and 0.86 in the validation set. CONCLUSION: Our research indicates that the risk column graph can be utilized to predict the risk of early postoperative recurrence in patients after MWA. This contributes to guiding personalized clinical treatment decisions and provides important references for improving the prognosis of patients.

17.
ACS Appl Mater Interfaces ; 16(13): 16152-16163, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502964

RESUMEN

The synthesis of anode materials plays an important role in determining the production efficiency, cost, and performance of lithium-ion batteries (LIBs). However, a low-cost, high-speed, scalable manufacturing process of the anode with the desired structural feature for practical technology adoption remains elusive. In this study, we propose a novel method called in situ flash shunt-electrothermal shock (SETS) which is controllable, fast, and energy-saving for synthesizing metal oxide-based materials. By using the example of direct electrothermal decomposition of ZIF-67 precursor loaded onto copper foil support, we achieve rapid (0.1-0.3 s) pyrolysis and generate porous hollow cubic structure material consisting of carbon-coated ultrasmall (10-15 nm) subcrystalline CoO/Co nanoparticles with controllable morphology. It was shown that CoO/Co@N-C exhibits prominent electrochemical performance with a high reversible capacity up to 1503.7 mA h g-1 after 150 cycles at 0.2 A g-1and stable capacities up to 434.1 mA h g-1 after 400 cycles at a high current density of 6 A g-1. This fabrication technique integrates the synthesis of active materials and the formation of electrode sheets into one process, thus simplifying the preparation of electrodes. Due to the simplicity and scalability of this process, it can be envisaged to apply it to the synthesis of metal oxide-based materials and to achieve large-scale production in a nanomanufacturing process.

18.
Sci Signal ; 17(846): eadp8569, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042728

RESUMEN

Chimeric antigen receptor (CAR) T cells have been used to successfully treat various blood cancers, but adverse effects have limited their potential. Here, we developed chimeric adaptor proteins (CAPs) and CAR tyrosine kinases (CAR-TKs) in which the intracellular ζ T cell receptor (TCRζ) chain was replaced with intracellular protein domains to stimulate signaling downstream of the TCRζ chain. CAPs contain adaptor domains and the kinase domain of ZAP70, whereas CAR-TKs contain only ZAP70 domains. We hypothesized that CAPs and CAR-TKs would be more potent than CARs because they would bypass both the steps that define the signaling threshold of TCRζ and the inhibitory regulation of upstream molecules. CAPs were too potent and exhibited high tonic signaling in vitro. In contrast, CAR-TKs exhibited high antitumor efficacy and significantly enhanced long-term tumor clearance in leukemia-bearing NSG mice as compared with the conventional CD19-28ζ-CAR-T cells. CAR-TKs were activated in a manner independent of the kinase Lck and displayed slower phosphorylation kinetics and prolonged signaling compared with the 28ζ-CAR. Lck inhibition attenuated CAR-TK cell exhaustion and improved long-term function. The distinct signaling properties of CAR-TKs may therefore be harnessed to improve the in vivo efficacy of T cells engineered to express an antitumor chimeric receptor.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Transducción de Señal , Linfocitos T , Animales , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Humanos , Transducción de Señal/inmunología , Ratones , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Proteína Tirosina Quinasa ZAP-70/genética , Proteína Tirosina Quinasa ZAP-70/inmunología , Inmunoterapia Adoptiva/métodos , Ratones Endogámicos NOD , Línea Celular Tumoral , Fosforilación
19.
Chem Commun (Camb) ; 60(78): 10898-10901, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39253897

RESUMEN

Coulombic efficiency (CE) and rate capability are crucial parameters for advanced secondary batteries. Herein, for the first time, we report controllable amorphization and morphology engineering on mixed-valence Fe(II,III)-MOFs from the crystalline to amorphous state and micro-clustered to hollow nano-spherical geometry through valence manipulation by a dissolved oxygen-mediated pathway. The disordered structure and the hollow nanostructure can endow the MOFs with the highest initial CE (>80%) to date for MOF electrodes, and ultrafast and super-stable near-pseudocapacitance lithium storage. These findings can provide new ideas for the engineering of MOF systems for application in LIBs.

20.
Plant Biotechnol J ; 11(3): 380-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23279050

RESUMEN

The activation of phospholipase Dα1 (PLDα1) produces lipid messenger phosphatidic acid and promotes stomatal closure in Arabidopsis. To explore the use of the PLDα1-mediated signalling towards decreasing water loss in crop plants, we introduced Arabidopsis PLDα1 under the control of a guard cell-specific promoter AtKatIpro into two canola (Brassica napus) cultivars. Multiple AtKatIpro ::PLDα1 lines in each cultivar displayed decreased water loss and improved biomass accumulation under hyperosmotic stress conditions, including drought and high salinity. Moreover, AtKatIpro ::PLDα1 plants produced more seeds than did WT plants in fields under drought. The results indicate that the guard cell-specific expression of PLDα1 has the potential to improve crop yield by enhancing drought tolerance.


Asunto(s)
Brassica napus/enzimología , Fosfolipasa D/fisiología , Estomas de Plantas/enzimología , Semillas/crecimiento & desarrollo , Agua/fisiología , Ácido Abscísico/fisiología , Proteínas de Arabidopsis/genética , Sequías , Flores/fisiología , Canales de Potasio de Rectificación Interna/genética , Regiones Promotoras Genéticas , Plantones/crecimiento & desarrollo , Cloruro de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA