Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(10): 18237-18246, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858985

RESUMEN

Quantum random numbers play a crucial role in diverse applications, including cryptography, simulation, and artificial intelligence. In contrast to predictable algorithm-based pseudo-random numbers, quantum physics provides new avenues for generating theoretically true random numbers by exploiting the inherent uncertainty contained in quantum phenomena. Here, we propose and demonstrate a quantum random number generator (QRNG) using a prepared broadband squeezed state of light, where the randomness of the generated numbers entirely originates from the quantum noise introduced by squeezing operation rather than vacuum noise. The relationship between entropy rate and squeezing level is analyzed. Furthermore, we employ a source-independent quantum random number protocol to enhance the security of the random number generator.

2.
Opt Lett ; 49(9): 2365-2368, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691720

RESUMEN

Near-infrared nanosecond (ns) single-longitudinal-mode (SLM) pulse light generated from an optical parametric oscillator (OPO) is an important source in nonlinear optics and high-precision spectral analysis. In this Letter, a stable SLM near-infrared ns pulse light source generated from the OPO is presented, which is achieved by developing a seed-injection automatic locking technique based on a pulse-integrated photodetector (PIPD). Depending on the PIPD, the peak power of the pulse light detected by the photodiode is converted to the average power by integrating several pulses. As a result, the detector saturation is thoroughly eliminated, and the interference signal including the resonance point between seed and pulse lights can easily be attained by scanning the resonator length. On this basis, a microcontroller unit (MCU) is employed to realize automatic locking by looking for the minimum value of the interference signal. Finally, a SLM 824 nm pulse light source with an output power of 20.5 W and a linewidth of 51.42 MHz is obtained. The presented method can pave the way to implement a low-cost and compact high-average-power SLM pulse OPO.

3.
Phys Rev Lett ; 132(14): 140802, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640392

RESUMEN

Quantum dense coding (QDC) means to transmit two classical bits by only transferring one quantum bit, which has enabled high-capacity information transmission and strengthened system security. Continuous-variable QDC offers a promising solution to increase communication rates while achieving seamless integration with classical communication systems. Here, we propose and experimentally demonstrate a high-speed quantum radio-frequency-over-light (RFOL) communication scheme based on QDC with an entangled state, and achieve a practical rate of 20 Mbps through digital modulation and RFOL communication. This scheme bridges the gap between quantum technology and real-world communication systems, which bring QDC closer to practical applications and offer prospects for further enhancement of metropolitan communication networks.

4.
Opt Express ; 31(1): 745-754, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36607007

RESUMEN

All-solid-state continuous-wave (CW) single-frequency tunable Ti:sapphire (Ti:S) laser is an important source in quantum optics and atomic physics. However, intracavity etalon (IE) locking is easily influenced by the intensity noise of the pump source in the low frequency band. In order to address this issue, a differential detector with dual-photodiodes (PDs) is designed and employed in the experiment. Both PDs are used to detect the lights of the pump source and the built Ti:S laser, respectively. As a result, the influence of the intensity noise of the pump source on the stability of the IE locking is successfully eliminated and the IE is stably locked to the oscillating longitudinal-mode of the laser. On this basis, a stable CW single-frequency tunable Ti:S laser is realized. The presented method is beneficial to attain a stable single-frequency tunable laser with immunity to the intensity noise of the pump source.

5.
Opt Lett ; 48(19): 4973-4976, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773363

RESUMEN

A high-average-power and narrow-linewidth nanosecond (ns) pulse 824 nm laser is a crucial source for the generation of deep-ultraviolet (DUV) 248 nm laser by means of the sum-frequency process with the 354.5 nm laser. To this purpose, in this Letter, we present a seed-injection-locked high-average-power ns pulse single-longitudinal-mode (SLM) 824 nm laser. By developing a novel, to the best of our knowledge, pulse-saturated seed-injection locking method, disturbance of the pulse laser on the locking of the injected seed laser is successfully eliminated. As a result, the output power of 824 nm laser is up to 21.2 W at the incident pump power of 48.1 W, and the pulse width is 15 ns. Especially, the signal-to-noise ratio of the detected modulated sideband signal exceeds 28 dB, which ensures that the achieved linewidth of the 824 nm laser is as narrow as 38.8 MHz. These results demonstrate the potential of the proposed pulse saturation seed-injection locking OPO cavity for high-power and narrow-linewidth laser applications.

6.
Opt Express ; 30(4): 6388-6396, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209578

RESUMEN

Quantum network plays a vitally important role in the practical application of quantum information, which requires the deterministic entanglement distribution among multiple remote users. Here, we propose a feasible scheme to deterministically distribute quadripartite entanglement by continuous-variable (CV) polarization states. The quantum server prepares the quadripartite CV polarization entanglement and distributes them to four remote users via optical fiber. In this way, the measurement of CV polarization entanglement is local oscillation free, which makes the long distance entanglement distribution in commercial optical fiber communication networks possible. Furthermore, both the Greenberger-Horne-Zeilinger-like (GHZ-like) and cluster-like polarization entangled states can be distributed among four users by controlling the beam splitter network in quantum server, which are confirmed by the extended criteria for polarization entanglement of multipartite optical modes. The protocol provides the direct reference for experimental implementation and can be directly extended to quantum network with more users, which is essential for a metropolitan quantum network.

7.
Opt Express ; 30(26): 47826-47835, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558701

RESUMEN

High-precision cavity locking is crucial for squeezing optical fields. Here, a bootstrapped low-noise photodetector is utilized in the generation process of the squeezed state of light. This process is based on a combination of a modified trans-impedance amplifier (TIA) circuit and a two-stage bootstrap amplifier circuit. This not only achieves high-precision and long-term stable locking of the optical cavity, but it also improves the degree to which the light field is squeezed. The experiment results show that the detector has a high signal-to-noise ratio (SNR) of 26.7 dB at the analysis frequency of 3 MHz when measuring the shot noise with an injection optical power of 800 µW, and the equivalent optical power noise level is lower than 2.4 pW/Hz in the frequency range of 1-30 MHz. Moreover, the squeezing degree of the quadrature amplitude squeezed state light field can be improved by more than 34.9% when the detector is used for optical cavity locking. The photodetector is useful in continuous variable (CV) quantum information research.

8.
Sci Adv ; 4(10): eaas9401, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30345350

RESUMEN

Quantum teleportation, which is the transfer of an unknown quantum state from one station to another over a certain distance with the help of nonlocal entanglement shared by a sender and a receiver, has been widely used as a fundamental element in quantum communication and quantum computation. Optical fibers are crucial information channels, but teleportation of continuous variable optical modes through fibers has not been realized so far. Here, we experimentally demonstrate deterministic quantum teleportation of an optical coherent state through fiber channels. Two sub-modes of an Einstein-Podolsky-Rosen entangled state are distributed to a sender and a receiver through a 3.0-km fiber, which acts as a quantum resource. The deterministic teleportation of optical modes over a fiber channel of 6.0 km is realized. A fidelity of 0.62 ± 0.03 is achieved for the retrieved quantum state, which breaks through the classical limit of 1/2. Our work provides a feasible scheme to implement deterministic quantum teleportation in communication networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA