Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neurophysiol ; 129(1): 144-158, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36416447

RESUMEN

Phrenic motoneurons (PhrMNs) innervate diaphragm myofibers. Located in the ventral gray matter (lamina IX), PhrMNs form a column extending from approximately the third to sixth cervical spinal segment. Phrenic motor output and diaphragm activation are impaired in many neuromuscular diseases, and targeted delivery of drugs and/or genetic material to PhrMNs may have therapeutic application. Studies of phrenic motor control and/or neuroplasticity mechanisms also typically require targeting of PhrMNs with drugs, viral vectors, or tracers. The location of the phrenic motoneuron pool, however, poses a challenge. Selective PhrMN targeting is possible with molecules that move retrogradely upon uptake into phrenic axons subsequent to diaphragm or phrenic nerve delivery. However, nonspecific approaches that use intrathecal or intravenous delivery have considerably advanced the understanding of PhrMN control. New opportunities for targeted PhrMN gene expression may be possible with intersectional genetic methods. This article provides an overview of methods for targeting the phrenic motoneuron pool for studies of PhrMNs in health and disease.


Asunto(s)
Técnicas de Transferencia de Gen , Neuronas Motoras , Ratas , Animales , Ratas Sprague-Dawley , Neuronas Motoras/fisiología , Diafragma/inervación , Nervio Frénico/fisiología
2.
J Neurophysiol ; 128(5): 1133-1142, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35976060

RESUMEN

Pompe disease is a lysosomal storage disease resulting from absence or deficiency of acid α-glucosidase (GAA). Tongue-related disorders including dysarthria, dysphagia, and obstructive sleep apnea are common in Pompe disease. Our purpose was to determine if designer receptors exclusively activated by designer drugs (DREADDs) could be used to stimulate tongue motor output in a mouse model of Pompe disease. An adeno-associated virus serotype 9 (AAV9) encoding an excitatory DREADD (AAV9-hSyn-hM3D(Gq)-mCherry, 2.44 × 1010 vg) was administered to the posterior tongue of 5-7-wk-old Gaa null (Gaa-/-) mice. Lingual EMG responses to intraperitoneal injection of saline or a DREADD ligand (JHU37160-dihydrochloride, J60) were assessed 12 wk later during spontaneous breathing. Saline injection produced no consistent changes in lingual EMG. Following the DREADD ligand, there were statistically significant (P < 0.05) increases in both tonic and phasic inspiratory EMG activity recorded from the posterior tongue. Brainstem histology confirmed mCherry expression in hypoglossal (XII) motoneurons in all mice, thus verifying retrograde movement of the AAV9 vector. Morphologically, Gaa-/- XII motoneurons showed histological characteristics that are typical of Pompe disease, including an enlarged soma and vacuolization. We conclude that lingual delivery of AAV9 can be used to drive functional expression of DREADD in XII motoneurons in a mouse model of Pompe disease.NEW & NOTEWORTHY In a mouse model of Pompe disease, lingual injection of adeno-associated virus (AAV) serotype 9 encoding DREADD was histologically verified to produce transgene expression in hypoglossal motoneurons. Subsequent intraperitoneal delivery of a DREADD ligand stimulated tonic and phase tongue motor output.In a mouse model of Pompe disease, lingual injection of adeno-associated virus (AAV) serotype 9 encoding DREADD was histologically verified to produce transgene expression in hypoglossal motoneurons. Subsequent intravenous delivery of a DREADD ligand stimulated tonic and phase tongue motor output.


Asunto(s)
Drogas de Diseño , Enfermedad del Almacenamiento de Glucógeno Tipo II , Ratones , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , alfa-Glucosidasas/metabolismo , Ligandos , Dependovirus/genética , Neuronas Motoras/metabolismo , Modelos Animales de Enfermedad , Nervio Hipogloso/metabolismo
3.
Gene Ther ; 28(7-8): 402-412, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33574581

RESUMEN

Dysfunction and/or reduced activity in the tongue muscles contributes to conditions such as dysphagia, dysarthria, and sleep disordered breathing. Current treatments are often inadequate, and the tongue is a readily accessible target for therapeutic gene delivery. In this regard, gene therapy specifically targeting the tongue motor system offers two general strategies for treating lingual disorders. First, correcting tongue myofiber and/or hypoglossal (XII) motoneuron pathology in genetic neuromuscular disorders may be readily achieved by intralingual delivery of viral vectors. The retrograde movement of viral vectors such as adeno-associated virus (AAV) enables targeted distribution to XII motoneurons via intralingual viral delivery. Second, conditions with impaired or reduced tongue muscle activation can potentially be treated using viral-driven chemo- or optogenetic approaches to activate or inhibit XII motoneurons and/or tongue myofibers. Further considerations that are highly relevant to lingual gene therapy include (1) the diversity of the motoneurons which control the tongue, (2) the patterns of XII nerve branching, and (3) the complexity of tongue muscle anatomy and biomechanics. Preclinical studies show considerable promise for lingual directed gene therapy in neuromuscular disease, but the potential of such approaches is largely untapped.


Asunto(s)
Técnicas de Transferencia de Gen , Nervio Hipogloso , Dependovirus/genética , Terapia Genética , Neuronas Motoras
4.
J Neurophysiol ; 126(2): 351-360, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34191636

RESUMEN

Pompe disease (PD) is a neuromuscular disorder caused by a mutation in the acid alpha-glucosidase (GAA) gene. Patients with late-onset PD retain some GAA activity and present symptoms later in life, with fatality mainly associated with respiratory failure. This case study presents diaphragm electrophysiology and a histological analysis of the brainstem, spinal cord, and diaphragm, from a male PD patient diagnosed with late-onset PD at age 35. The patient was wheelchair dependent by age 38, required nocturnal ventilation at age 40, 24-h noninvasive ventilation by age 43, and passed away from respiratory failure at age 54. Diaphragm electromyography recorded using indwelling "pacing" wires showed asynchronous bursting between the left and right diaphragm during brief periods of independent breathing. The synchrony declined over a 4-yr period preceding respiratory failure. Histological assessment indicated motoneuron atrophy in the medulla and rostral spinal cord. Hypoglossal (soma size: 421 ± 159 µm2) and cervical motoneurons (soma size: 487 ± 189 µm2) had an atrophied, elongated appearance. In contrast, lumbar (soma size: 1,363 ± 677 µm2) and sacral motoneurons (soma size: 1,411 ± 633 µm2) had the ballooned morphology typical of early-onset PD. Diaphragm histology indicated loss of myofibers. These results are consistent with neuromuscular degeneration and the concept that effective PD therapy will need to target the central nervous system, in addition to skeletal and cardiac muscle.NEW & NOTEWORTHY This case study offered a unique opportunity to investigate longitudinal changes in phrenic neurophysiology in an individual with severe, ventilator-dependent, late-onset Pompe disease. Additional diaphragm and neural tissue histology upon autopsy confirmed significant neuromuscular degeneration, and it provided novel insights regarding rostral to caudal variability in the neuropathology. These findings suggest that a successful treatment approach for ventilator-dependent Pompe disease should target the central nervous system, in addition to skeletal muscle.


Asunto(s)
Diafragma/fisiopatología , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Ventilación Pulmonar , Tronco Encefálico/patología , Tronco Encefálico/fisiopatología , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Humanos , Masculino , Persona de Mediana Edad , Nervio Frénico/patología , Nervio Frénico/fisiopatología , Médula Espinal/patología , Médula Espinal/fisiopatología
5.
J Physiol ; 598(20): 4693-4711, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32735344

RESUMEN

KEY POINTS: Motor units, comprising a motor neuron and the muscle fibre it innervates, are activated in an orderly fashion to provide varying amounts of force. A unilateral C2 spinal hemisection (C2SH) disrupts predominant excitatory input from medulla, causing cessation of inspiratory-related diaphragm muscle activity, whereas higher force, non-ventilatory diaphragm activity persists. In this study, we show a disproportionately larger loss of excitatory glutamatergic innervation to small phrenic motor neurons (PhMNs) following C2SH, as compared with large PhMNs ipsilateral to injury. Our data suggest that there is a dichotomy in the distribution of inspiratory-related descending excitatory glutamatergic input to small vs. large PhMNs that reflects their differential recruitment. ABSTRACT: Excitatory glutamatergic input mediating inspiratory drive to phrenic motor neurons (PhMNs) emanates primarily from the ipsilateral ventrolateral medulla. Unilateral C2 hemisection (C2SH) disrupts this excitatory input, resulting in cessation of inspiratory-related diaphragm muscle (DIAm) activity. In contrast, after C2SH, higher force, non-ventilatory DIAm activity persists. Inspiratory behaviours require recruitment of only smaller PhMNs, whereas with more forceful expulsive/straining behaviours, larger PhMNs are recruited. Accordingly, we hypothesize that C2SH primarily disrupts glutamatergic synaptic inputs to smaller PhMNs, whereas glutamatergic synaptic inputs to larger PhMNs are preserved. We examined changes in glutamatergic presynaptic input onto retrogradely labelled PhMNs using immunohistochemistry for VGLUT1 and VGLUT2. We found that 7 days after C2SH there was an ∼60% reduction in glutamatergic inputs to smaller PhMNs compared with an ∼35% reduction at larger PhMNs. These results are consistent with a more pronounced impact of C2SH on inspiratory behaviours of the DIAm, and the preservation of higher force behaviours after C2SH. These results indicate that the source of glutamatergic synaptic input to PhMNs varies depending on motor neuron size and reflects different functional control - perhaps separate central pattern generator and premotor circuits. For smaller PhMNs, the central pattern generator for inspiration is located in the pre-Bötzinger complex and premotor neurons in the ventrolateral medulla, sending predominantly ipsilateral projections via the dorsolateral funiculus. C2SH disrupts this glutamatergic input. For larger PhMNs, a large proportion of excitatory inputs appear to exist below the C2 level or from contralateral regions of the brainstem and spinal cord.


Asunto(s)
Nervio Frénico , Traumatismos de la Médula Espinal , Diafragma , Humanos , Neuronas Motoras
6.
J Neurochem ; 153(5): 586-598, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31563147

RESUMEN

The diaphragm muscle comprises various types of motor units that are recruited in an orderly fashion governed by the intrinsic electrophysiological properties (membrane capacitance as a function of somal surface area) of phrenic motor neurons (PhMNs). Glutamate is the main excitatory neurotransmitter at PhMNs and acts primarily via fast acting AMPA and N-methyl-D-aspartic acid (NMDA) receptors. Differences in receptor expression may also contribute to motor unit recruitment order. We used single cell, multiplex fluorescence in situ hybridization to determine glutamatergic receptor mRNA expression across PhMNs based on their somal surface area. In adult male and female rats (n = 9) PhMNs were retrogradely labeled for analyses (n = 453 neurons). Differences in the total number and density of mRNA transcripts were evident across PhMNs grouped into tertiles according to somal surface area. A ~ 25% higher density of AMPA (Gria2) and NMDA (Grin1) mRNA expression was evident in PhMNs in the lower tertile compared to the upper tertile. These smaller PhMNs likely comprise type S motor units that are recruited first to accomplish lower force, ventilatory behaviors. In contrast, larger PhMNs with lower volume densities of AMPA and NMDA mRNA expression presumably comprise type FInt and FF motor units that are recruited during higher force, expulsive behaviors. Furthermore, there was a significantly higher cytosolic NMDA mRNA expression in small PhMNs suggesting a more important role for NMDA-mediated glutamatergic neurotransmission at smaller PhMNs. These results are consistent with the observed order of motor unit recruitment and suggest a role for glutamatergic receptors in support of this orderly recruitment. Cover Image for this issue: doi: 10.1111/jnc.14747.


Asunto(s)
Neuronas Motoras/metabolismo , Nervio Frénico/metabolismo , ARN Mensajero/biosíntesis , Receptores AMPA/biosíntesis , Receptores de N-Metil-D-Aspartato/biosíntesis , Reclutamiento Neurofisiológico/fisiología , Animales , Femenino , Expresión Génica , Masculino , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética
7.
J Neurophysiol ; 122(4): 1518-1529, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31389739

RESUMEN

Like all skeletal muscles, the diaphragm muscle accomplishes a range of motor behaviors by recruiting different motor unit types in an orderly fashion. Recruitment of phrenic motor neurons (PhMNs) is generally assumed to be based primarily on the intrinsic properties of PhMNs with an equal distribution of descending excitatory inputs to all PhMNs. However, differences in presynaptic excitatory input across PhMNs of varying sizes could also contribute to the orderly recruitment pattern. In the spinal cord of Sprague-Dawley rats, we retrogradely labeled PhMNs using cholera toxin B (CTB) and validated a robust confocal imaging-based technique that utilizes semiautomated processing to identify presynaptic glutamatergic (Glu) terminals within a defined distance around the somal membrane of PhMNs of varying size. Our results revealed an ~10% higher density of Glu terminals at PhMNs in the lower tertile of somal surface area. These smaller PhMNs are likely recruited first to accomplish lower force ventilatory behaviors of the diaphragm as compared with larger PhMNs in the upper tertile that are recruited to accomplish higher force expulsive behaviors. These results suggest that differences in excitatory synaptic input to PhMNs may also contribute to the orderly recruitment of diaphragm motor units.NEW & NOTEWORTHY The distribution of excitatory glutamatergic synaptic input to phrenic motor neurons differs across motor neurons of varying size. These findings support the size principle of motor unit recruitment that underlies graded force generation in a muscle, which is based on intrinsic electrophysiological properties of motor neurons resulting from differences in somal surface area. A higher density of glutamatergic inputs at smaller, more excitable motor neurons substantiates the earlier and more frequent recruitment of these units.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas Motoras/fisiología , Terminales Presinápticos/fisiología , Animales , Diafragma/inervación , Diafragma/fisiología , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Nervio Frénico/citología , Nervio Frénico/fisiología , Terminales Presinápticos/metabolismo , Ratas , Ratas Sprague-Dawley , Reclutamiento Neurofisiológico
8.
J Neurophysiol ; 117(2): 545-555, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27832610

RESUMEN

Contusion-type injuries to the spinal cord are characterized by tissue loss and disruption of spinal pathways. Midcervical spinal cord injuries impair the function of respiratory muscles and may contribute to significant respiratory complications. This study systematically assessed the impact of a 100-kDy unilateral C4 contusion injury on diaphragm muscle activity across a range of motor behaviors in rats. Chronic diaphragm electromyography (EMG) was recorded before injury and at 1 and 7 days postinjury (DPI). Histological analyses assessed the extent of perineuronal net formation, white-matter sparing, and phrenic motoneuron loss. At 7 DPI, ∼45% of phrenic motoneurons were lost ipsilaterally. Relative diaphragm root mean square (RMS) EMG activity increased bilaterally across a range of motor behaviors by 7 DPI. The increase in diaphragm RMS EMG activity was associated with an increase in neural drive (RMS value at 75 ms after the onset of diaphragm activity) and was more pronounced during higher force, nonventilatory motor behaviors. Animals in the contusion group displayed a transient decrease in respiratory rate and an increase in burst duration at 1 DPI. By 7 days, following midcervical contusion, there was significant perineuronal net formation and white-matter loss that spanned 1 mm around the injury epicenter. Taken together, these findings are consistent with increased recruitment of remaining motor units, including more fatigable, high-threshold motor units, during higher force, nonventilatory behaviors. Changes in diaphragm EMG activity following midcervical contusion injury reflect complex adaptations in neuromotor control that may increase the risk of motor-unit fatigue and compromise the ability to sustain higher force diaphragm efforts. NEW & NOTEWORTHY: The present study shows that unilateral contusion injury at C4 results in substantial loss of phrenic motoneurons but increased diaphragm muscle activity across a range of ventilatory and higher force, nonventilatory behaviors. Measures of neural drive indicate increased descending input to phrenic motoneurons that was more pronounced during higher force, nonventilatory behaviors. These findings reveal novel, complex adaptations in neuromotor control following injury, suggestive of increased recruitment of more fatigable, high-threshold motor units.


Asunto(s)
Contusiones/complicaciones , Diafragma/fisiopatología , Potenciales Evocados Motores/fisiología , Lateralidad Funcional/fisiología , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/patología , Análisis de Varianza , Animales , Vértebras Cervicales/patología , Toxina del Cólera/metabolismo , Diafragma/patología , Modelos Animales de Enfermedad , Electromiografía , Masculino , Neuronas Motoras/fisiología , Nervio Frénico/patología , Ratas , Ratas Sprague-Dawley
9.
Exp Neurol ; 376: 114769, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582278

RESUMEN

Ampakines are positive allosteric modulators of AMPA receptors. We hypothesized that low-dose ampakine treatment increases diaphragm electromyogram (EMG) activity after mid-cervical contusion injury in rats. Adult male and female Sprague Dawley rats were implanted with in-dwelling bilateral diaphragm EMG electrodes. Rats received a 150 kDyn C4 unilateral contusion (C4Ct). At 4- and 14-days following C4Ct, rats were given an intravenous bolus of ampakine CX717 (5 mg/kg, n = 10) or vehicle (2-hydroxypropyl-beta-cyclodextrin; HPCD; n = 10). Diaphragm EMG was recorded while breathing was assessed using whole-body plethysmography. At 4-days, ampakine administration caused an immediate and sustained increase in bilateral peak inspiratory diaphragm EMG bursting and ventilation. The vehicle had no impact on EMG bursting. CX717 treated rats were able to increase EMG activity during a respiratory challenge to a greater extent vs. vehicle treated. Rats showed a considerable degree of spontaneous recovery of EMG bursting by 14 days, and the impact of CX717 delivery was blunted as compared to 4-days. Direct recordings from the phrenic nerve at 21-24 days following C4Ct confirmed that ampakines stimulated bilateral phrenic neural output in injured rats. We conclude that low-dose intravenous treatment with a low-impact ampakine can enhance diaphragm activation shortly following mid-cervical contusion injury, when deficits in diaphragm activation are prominent.


Asunto(s)
Diafragma , Electromiografía , Isoxazoles , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Ratas , Masculino , Femenino , Traumatismos de la Médula Espinal/fisiopatología , Modelos Animales de Enfermedad , Contusiones/fisiopatología , Médula Cervical/lesiones , Médula Cervical/efectos de los fármacos
10.
Elife ; 122024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451184

RESUMEN

Neurogenic bladder dysfunction causes urological complications and reduces the quality of life in persons with spinal cord injury (SCI). Glutamatergic signaling via AMPA receptors is fundamentally important to the neural circuits controlling bladder voiding. Ampakines are positive allosteric modulators of AMPA receptors that can enhance the function of glutamatergic neural circuits after SCI. We hypothesized that ampakines can acutely stimulate bladder voiding that has been impaired due to thoracic contusion SCI. Adult female Sprague-Dawley rats received a unilateral contusion of the T9 spinal cord (n = 10). Bladder function (cystometry) and coordination with the external urethral sphincter (EUS) were assessed 5 d post-SCI under urethane anesthesia. Data were compared to responses in spinal-intact rats (n = 8). The 'low-impact' ampakine CX1739 (5, 10, or 15 mg/kg) or vehicle (2-hydroxypropyl-beta-cyclodextrin [HPCD]) was administered intravenously. The HPCD vehicle had no discernible impact on voiding. In contrast, following CX1739, the pressure threshold for inducing bladder contraction, voided volume, and the interval between bladder contractions were significantly reduced. These responses occurred in a dose-dependent manner. We conclude that modulating AMPA receptor function using ampakines can rapidly improve bladder-voiding capability at subacute time points following contusion SCI. These results may provide a new and translatable method for therapeutic targeting of bladder dysfunction acutely after SCI.


Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Ratas , Femenino , Animales , Calidad de Vida , Ratas Sprague-Dawley , Receptores AMPA
11.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659846

RESUMEN

Impaired diaphragm activation contributes to morbidity and mortality in many neurodegenerative diseases and neurologic injuries. We conducted experiments to determine if expression of an excitatory DREADD (designer receptors exclusively activation by designer drugs) in the mid-cervical spinal cord would enable respiratory-related activation of phrenic motoneurons to increase diaphragm activation. Wild type (C57/bl6) and ChAT-Cre mice received bilateral intraspinal (C4) injections of an adeno-associated virus (AAV) encoding the hM3D(Gq) excitatory DREADD. In wild type mice, this produced non-specific DREADD expression throughout the mid-cervical ventral horn. In ChAT-Cre mice, a Cre-dependent viral construct was used to drive DREADD expression in C4 ventral horn motoneurons, targeting the phrenic motoneuron pool. Diaphragm EMG was recorded during spontaneous breathing at 6-8 weeks post-AAV delivery. The selective DREADD ligand JHU37160 (J60) caused a bilateral, sustained (>1 hr) increase in inspiratory EMG bursting in both groups; the relative increase was greater in ChAT-Cre mice. Additional experiments in a ChAT-Cre rat model were conducted to determine if spinal DREADD activation could increase inspiratory tidal volume (VT) during spontaneous breathing without anesthesia. Three to four months after intraspinal (C4) injection of AAV driving Cre-dependent hM3D(Gq) expression, intravenous J60 resulted in a sustained (>30 min) increase in VT assessed using whole-body plethysmography. Subsequently, direct nerve recordings confirmed that J60 evoked a >50% increase in inspiratory phrenic output. The data show that mid-cervical spinal DREADD expression targeting the phrenic motoneuron pool enables ligand-induced, sustained increases in the neural drive to the diaphragm. Further development of this technology may enable application to clinical conditions associated with impaired diaphragm activation and hypoventilation.

12.
Biochem Pharmacol ; 228: 116302, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38763261

RESUMEN

Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.


Asunto(s)
Receptores AMPA , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Animales , Humanos , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Antagonistas de Aminoácidos Excitadores/farmacología
13.
J Appl Physiol (1985) ; 134(6): 1332-1340, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37022966

RESUMEN

Neuromotor control of diaphragm muscle (DIAm) motor units is dependent on an orderly size-dependent recruitment of phrenic motor neurons (PhMNs). Slow (type S) and fast, fatigue resistant (type FR) DIAm motor units, which are frequently recruited to sustain ventilation, comprise smaller PhMNs that innervate type I and IIa DIAm fibers. More fatigable fast (type FF) motor units, which are infrequently recruited for higher force, expulsive behaviors, comprise larger PhMNs that innervate more type IIx/IIb DIAm fibers. We hypothesize that due to the more frequent activation and thus higher energy demand of type S and FR motor units, the mitochondrial volume density (MVD) of smaller PhMNs is greater compared with larger PhMNs. In eight adult (6 mo old) Fischer 344 rats, PhMNs were identified via intrapleural injection of Alexa488-conjugated cholera toxin B (CTB). Following retrograde CTB labeling, mitochondria in PhMNs were labeled by transdural infusion of MitoTracker Red. PhMNs and mitochondria were imaged using multichannel confocal microscopy using a ×60 oil objective. Following optical sectioning and three-dimensional (3-D) rendering, PhMNs and mitochondria were analyzed volumetrically using Nikon Elements software. Analysis of MVD in somal and dendritic compartments was stratified by PhMN somal surface area. Smaller PhMNs (likely S and FR units) had greater somal MVDs compared with larger PhMNs (likely FF units). By contrast, proximal dendrites or larger PhMNs had higher MVD compared with dendrites of smaller PhMNs. We conclude that more active smaller PhMNs have a higher mitochondrial volume density to support their higher energy demand in sustaining ventilation.NEW & NOTEWORTHY Type S and FR motor units, comprising smaller phrenic motor neurons (PhMNs) are regularly activated to perform indefatigable ventilatory requirements. By contrast, type FF motor units, comprising larger PhMNs, are infrequently activated to perform expulsive straining and airway defense maneuvers. This difference in activation history is mirrored in the mitochondrial volume density (MVD), with smaller PhMNs having higher MVD than larger PhMNs. In proximal dendrites, this trend was reversed, with larger PhMNs having higher MVD than smaller PhMNs, likely due to the maintenance requirements for the larger dendritic arbor of FF PhMNs.


Asunto(s)
Diafragma , Neuronas Motoras , Ratas , Animales , Tamaño Mitocondrial , Neuronas Motoras/fisiología , Ratas Endogámicas F344 , Diafragma/fisiología , Fibras Musculares Esqueléticas , Nervio Frénico/fisiología
14.
Respir Physiol Neurobiol ; 307: 103975, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206972

RESUMEN

The spiny mouse (Acomys) is a precocial mammal with unique regenerative abilities. We used whole-body plethysmography to describe the breathing patterns and CO2 production (VCO2) of adult spiny mice (n = 10 male, 10 female) and C57BL/6 mice (n = 9 male, 11 female). During quiet breathing, female but not male spiny mice had lower tidal volumes and CO2 production vs. C57BL/6 mice. During extended hypoxia (30 min), male and female spiny mice decreased VCO2 and tidal volume to a greater degree than C57BL/6 mice. During an acute hypoxic-hypercapnic respiratory challenge (10% O2, 7% CO2), male and female spiny mice had blunted ventilatory responses as compared to C57BL/6 mice, primarily from a diminished increase in respiratory rate. These data establish a baseline for studies of respiratory physiology and neurobiology in spiny mice in the context of their remarkable regenerative capacity and their unique background of a desert dwelling species.


Asunto(s)
Dióxido de Carbono , Murinae , Animales , Ratones , Femenino , Ratones Endogámicos C57BL , Murinae/fisiología , Hipercapnia , Hipoxia , Respiración
15.
Brain Commun ; 5(2): fcad067, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091583

RESUMEN

Recent work shows that certain antibody-based assays for the neurofilament light chain detect informative signals in the CSF and blood of human and animals affected by a variety of CNS injury and disease states. Much of this work has been performed using two mouse monoclonal antibodies to neurofilament light, UD1 and UD2, also known as Clones 2.1 and 47.3, respectively. These are the essential components of the Uman Diagnostics Neurofilament-Light™ ELISA kit, the Quanterix Simoa™ bead-based assay and others. We show that both antibodies bind to neighbouring epitopes in a short, conserved and unusual peptide in the centre of the neurofilament light Coil 2 segment of the 'rod' domain. We also describe a surprising and useful feature of Uman and similar reagents. While other well-characterized neurofilament antibodies generally show robust staining of countless cells and processes in CNS sections from healthy rats, both Uman antibodies reveal only a minor subset of profiles, presumably spontaneously degenerating or degenerated neurons and their processes. However, following experimental mid-cervical spinal cord injuries to rats, both Uman antibodies recognize numerous profiles in fibre tracts damaged by the injury administered. These profiles were typically swollen, beaded, discontinuous or sinusoidal as expected for degenerating and degenerated processes. We also found that several antibodies to the C-terminal 'tail' region of the neurofilament light protein bind undamaged axonal profiles but fail to recognize the Uman-positive material. The unmasking of the Uman epitopes and the loss of the neurofilament light tail epitopes can be mimicked by treating sections from healthy animals with proteases suggesting that the immunostaining changes we discovered are due to neurodegeneration-induced proteolysis. We have also generated a novel panel of monoclonal and polyclonal antibodies directed against the Uman epitopes that have degeneration-specific staining properties identical to the Uman reagents. Using these, we show that the region to which the Uman reagents bind contains further hidden epitopes distinct from those recognized by the two Uman reagents. We speculate that the Uman-type epitopes are part of a binding region important for higher order neurofilament assembly. The work provides important insights into the properties of the Uman assay, describes novel and useful properties of Uman-type and neurofilament light tail-binding antibodies and provides a hypothesis relevant to further understanding of neurofilament assembly.

16.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37293023

RESUMEN

Neurogenic bladder dysfunction causes urological complications and reduces the quality of life in persons with spinal cord injury (SCI). Glutamatergic signaling via AMPA receptors is fundamentally important to the neural circuits controlling bladder voiding. Ampakines are positive allosteric modulators of AMPA receptors that can enhance the function of glutamatergic neural circuits after SCI. We hypothesized that ampakines can acutely stimulate bladder voiding that has been impaired due to thoracic contusion SCI. Adult female Sprague Dawley rats received a unilateral contusion of the T9 spinal cord (n=10). Bladder function (cystometry) and coordination with the external urethral sphincter (EUS) were assessed five days post-SCI under urethane anesthesia. Data were compared to responses in spinal intact rats (n=8). The "low impact" ampakine CX1739 (5, 10, or 15 mg/kg) or vehicle (HPCD) was administered intravenously. The HPCD vehicle had no discernable impact on voiding. In contrast, following CX1739, the pressure threshold for inducing bladder contraction, voided volume, and the interval between bladder contractions were significantly reduced. These responses occurred in a dose-dependent manner. We conclude that modulating AMPA receptor function using ampakines can rapidly improve bladder voiding capability at sub-acute time points following contusion SCI. These results may provide a new and translatable method for therapeutic targeting of bladder dysfunction acutely after SCI.

17.
Respir Physiol Neurobiol ; 309: 103998, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36423822

RESUMEN

Inadequate tongue muscle activation contributes to dysarthria, dysphagia, and obstructive sleep apnea. Thus, treatments which increase tongue muscle activity have potential clinical benefit. We hypothesized that lingual injection of an adeno-associated virus (AAV) encoding channelrhodopsin-2 (ChR2) would enable light-induced activation of tongue motor units during spontaneous breathing. An AAV serotype 9 vector (pACAGW-ChR2-Venus-AAV9, 8.29 × 1011 vg) was injected to the posterior tongue in adult C57BL/6J mice. After 12 weeks, mice were anesthetized and posterior tongue electromyographic (EMG) activity was recorded during spontaneous breathing; a light source was positioned near the injection site. Light-evoked EMG responses increased with the intensity and duration of pulses. Stimulus trains (250 ms) evoked EMG bursts that were comparable to endogenous (inspiratory) tongue muscle activation. Histology confirmed lingual myofiber transgene expression. We conclude that intralingual AAV9-ChR2 delivery enables light evoked lingual EMG activity. These proof-of-concept studies lay the groundwork for clinical application of this novel approach to lingual therapeutics.


Asunto(s)
Optogenética , Apnea Obstructiva del Sueño , Ratones , Animales , Ratones Endogámicos C57BL , Respiración , Lengua/fisiología
18.
Sci Rep ; 12(1): 6503, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444167

RESUMEN

Impaired diaphragm activation is common in many neuromuscular diseases. We hypothesized that expressing photoreceptors in diaphragm myofibers would enable light stimulation to evoke functional diaphragm activity, similar to endogenous bursts. In a mouse model, adeno-associated virus (AAV) encoding channelrhodopsin-2 (AAV9-CAG-ChR2-mVenus, 6.12 × 1011 vg dose) was delivered to the diaphragm using a minimally invasive method of microinjection to the intrapleural space. At 8-18 weeks following AAV injection, mice were anesthetized and studied during spontaneous breathing. We first showed that diaphragm electromyographic (EMG) potentials could be evoked with brief presentations of light, using a 473 nm high intensity LED. Evoked potential amplitude increased with intensity or duration of the light pulse. We next showed that in a paralyzed diaphragm, trains of light pulses evoked diaphragm EMG activity which resembled endogenous bursting, and this was sufficient to generate respiratory airflow. Light-evoked diaphragm EMG bursts showed no diminution after up to one hour of stimulation. Histological evaluation confirmed transgene expression in diaphragm myofibers. We conclude that intrapleural delivery of AAV9 can drive expression of ChR2 in the diaphragm and subsequent photostimulation can evoke graded compound diaphragm EMG activity similar to endogenous inspiratory bursting.


Asunto(s)
Diafragma , Optogenética , Animales , Channelrhodopsins/genética , Dependovirus/genética , Electromiografía , Ratones
19.
Exp Neurol ; 353: 114030, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35247372

RESUMEN

Upper cervical spinal cord injuries (SCI) disrupt descending inputs to phrenic motor neurons (PhMNs), impairing respiratory function. Unilateral spinal hemisection at C2 (C2SH) results in loss of ipsilateral rhythmic diaphragm muscle (DIAm) EMG activity associated with lower force behaviors accomplished by recruitment of smaller PhMNs in rats. Activity during higher force, non-ventilatory behaviors that recruit larger PhMNs is minimally impaired following C2SH. We previously showed neuroplasticity in glutamatergic receptor expression in PhMN post-C2SH with changes in NMDA receptor expression reflecting functional recovery over time. We hypothesize that C2SH-induced changes in glutamatergic receptor (AMPA and NMDA) mRNA expression in PhMNs vary with motor neuron size, with more pronounced changes in smaller PhMNs. Retrogradely-labelled PhMNs were classified in tertiles according to somal surface area and mRNA expression was measured using single-cell, multiplex fluorescence in situ hybridization. Ipsilateral to C2SH, a pronounced reduction in NMDA mRNA expression in PhMNs was evident at 3 days post-injury with similar impact on PhMNs in the lower size tertile (~68% reduction) and upper tertile (~60%); by 21 days, there was near complete restoration of NMDA receptor mRNA expression across all PhMNs. There were no changes in NMDA mRNA expression contralateral to C2SH. There were no changes in AMPA mRNA expression at PhMNs on either side of the spinal cord or at any time-point post-C2SH. In summary, following C2SH there is ipsilateral reduction in PhMN NMDA mRNA expression at 3 days that is not limited to smaller PhMN recruited in the generation of lower force ventilatory behaviors. The recovery of NMDA mRNA expression by 21 days post-C2SH is consistent with evidence of spontaneous recovery of ipsilateral DIAm activity at this timepoint. These findings suggest a possible role for NMDA receptor mediated glutamatergic signaling in mechanisms supporting postsynaptic neuroplasticity at the PhMN pool and recovery of DIAm activity after cervical SCI.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Animales , Médula Cervical/lesiones , Diafragma/fisiología , Hibridación Fluorescente in Situ , Neuronas Motoras/fisiología , N-Metilaspartato/metabolismo , Nervio Frénico/fisiología , ARN Mensajero/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Recuperación de la Función/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
20.
Handb Clin Neurol ; 188: 393-408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965035

RESUMEN

The phrenic neuromuscular system consists of the phrenic motor nucleus in the mid-cervical spinal cord, the phrenic nerve, and the diaphragm muscle. This motor system helps sustain breathing throughout life, while also contributing to posture, coughing, swallowing, and speaking. The phrenic nerve contains primarily efferent phrenic axons and afferent axons from diaphragm sensory receptors but is also a conduit for autonomic fibers. On a breath-by-breath basis, rhythmic (inspiratory) depolarization of phrenic motoneurons occurs due to excitatory bulbospinal synaptic pathways. Further, a complex propriospinal network innervates phrenic motoneurons and may serve to coordinate postural, locomotor, and respiratory movements. The phrenic neuromuscular system is impacted in a wide range of neuromuscular diseases and injuries. Contemporary research is focused on understanding how neuromuscular plasticity occurs in the phrenic neuromuscular system and using this information to optimize treatments and rehabilitation strategies to improve breathing and related behaviors.


Asunto(s)
Neuronas Motoras , Nervio Frénico , Diafragma/inervación , Humanos , Neuronas Motoras/fisiología , Nervio Frénico/fisiología , Respiración , Médula Espinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA