Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 187(11): 2657-2681, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788689

RESUMEN

Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional. Some components turn over with shockingly high rates and others do not turn over at all, further making this process enigmatic. However, turnover can address fundamental problems by yielding powerful properties, including regeneration, rapid repair onset, clearance of unpredictable damage and errors, maintenance of low constitutive levels of disrepair, prevention of stable hazards, and transitions. I argue that trade-offs between turnover benefits and metabolic costs, combined with constraints on turnover, determine its presence and rates across distinct contexts. I suggest that the limits of turnover help explain aging and that turnover properties and the basis for its levels underlie this fundamental component of life.


Asunto(s)
Envejecimiento , Animales , Humanos , Proteínas/metabolismo , Regeneración
2.
Cell ; 175(2): 327-345, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30290140

RESUMEN

Regeneration is one of the great mysteries of biology. Planarians are flatworms capable of dramatic feats of regeneration, which have been studied for over 2 centuries. Recent findings identify key cellular and molecular principles underlying these feats. A stem cell population (neoblasts) generates new cells and is comprised of pluripotent stem cells (cNeoblasts) and fate-specified cells (specialized neoblasts). Positional information is constitutively active and harbored primarily in muscle, where it acts to guide stem cell-mediated tissue turnover and regeneration. I describe here a model in which positional information and stem cells combine to enable regeneration.


Asunto(s)
Planarias/fisiología , Regeneración/fisiología , Animales , Diferenciación Celular/fisiología , Planarias/genética , Células Madre Pluripotentes/fisiología , Células Madre/fisiología
3.
Cell ; 155(4): 738-9, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209612

RESUMEN

Embryos and juveniles in many organisms repair tissue injuries better than adults. In this issue, Shyh-Chang et al. find that postnatal activation of Lin28a, a gene typically active in embryonic development, promotes better than normal tissue repair in mice, including following ear and digit injuries.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Cicatrización de Heridas , Animales , Humanos
4.
EMBO J ; 41(21): e109895, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35971838

RESUMEN

Regeneration and tissue homeostasis require accurate production of missing cell lineages. Cell production is driven by changes to gene expression, which is shaped by multiple layers of regulation. Here, we find that the ubiquitous mRNA base-modification, m6A, is required for proper cell fate choice and cellular maturation in planarian stem cells (neoblasts). We mapped m6A-enriched regions in 7,600 planarian genes and found that perturbation of the m6A pathway resulted in progressive deterioration of tissues and death. Using single-cell RNA sequencing of >20,000 cells following perturbation of the m6A pathway, we identified an increase in expression of noncanonical histone variants, and that inhibition of the pathway resulted in accumulation of undifferentiated cells throughout the animal in an abnormal transcriptional state. Analysis of >1,000 planarian gene expression datasets revealed that the inhibition of the chromatin modifying complex NuRD had almost indistinguishable consequences, unraveling an unappreciated link between m6A and chromatin modifications. Our findings reveal that m6A is critical for planarian stem cell homeostasis and gene regulation in tissue maintenance and regeneration.


Asunto(s)
Planarias , Animales , Planarias/fisiología , Diferenciación Celular/genética , Células Madre/metabolismo , Homeostasis/genética , Cromatina/metabolismo
5.
PLoS Biol ; 20(7): e3001472, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35839223

RESUMEN

Sexually reproducing animals segregate their germline from their soma. In addition to gamete-producing gonads, planarian and parasitic flatworm reproduction relies on yolk cell-generating accessory reproductive organs (vitellaria) supporting development of yolkless oocytes. Despite the importance of vitellaria for flatworm reproduction (and parasite transmission), little is known about this unique evolutionary innovation. Here, we examine reproductive system development in the planarian Schmidtea mediterranea, in which pluripotent stem cells generate both somatic and germ cell lineages. We show that a homolog of the pluripotency factor Klf4 is expressed in primordial germ cells (PGCs), presumptive germline stem cells (GSCs), and yolk cell progenitors. Knockdown of this klf4-like (klf4l) gene results in animals that fail to specify or maintain germ cells; surprisingly, they also fail to maintain yolk cells. We find that yolk cells display germ cell-like attributes and that vitellaria are structurally analogous to gonads. In addition to identifying a new proliferative cell population in planarians (yolk cell progenitors) and defining its niche, our work provides evidence supporting the hypothesis that flatworm germ cells and yolk cells share a common evolutionary origin.


Asunto(s)
Células Madre Adultas , Planarias , Células Madre Pluripotentes , Animales , Células Germinativas , Factores de Transcripción de Tipo Kruppel/genética , Planarias/genética
6.
Cell ; 139(6): 1056-68, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005801

RESUMEN

How animals establish and pattern the primary body axis is one of the most fundamental problems in biology. Data from diverse deuterostomes (frog, fish, mouse, and amphioxus) and from planarians (protostomes) suggest that Wnt signaling through beta-catenin controls posterior identity during body plan formation in most bilaterally symmetric animals. Wnt signaling also influences primary axis polarity of pre-bilaterian animals, indicating that an axial patterning role for Wnt signaling predates the evolution of bilaterally symmetric animals. The use of posterior Wnt signaling and anterior Wnt inhibition might be a unifying principle of body plan development in most animals.


Asunto(s)
Tipificación del Cuerpo , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , beta Catenina/metabolismo
7.
PLoS Genet ; 17(3): e1009466, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780442

RESUMEN

Planarians are flatworms and can perform whole-body regeneration. This ability involves a mechanism to distinguish between anterior-facing wounds that require head regeneration and posterior-facing wounds that require tail regeneration. How this head-tail regeneration polarity decision is made is studied to identify principles underlying tissue-identity specification in regeneration. We report that inhibition of activin-2, which encodes an Activin-like signaling ligand, resulted in the regeneration of ectopic posterior-facing heads following amputation. During tissue turnover in uninjured planarians, positional information is constitutively expressed in muscle to maintain proper patterning. Positional information includes Wnts expressed in the posterior and Wnt antagonists expressed in the anterior. Upon amputation, several wound-induced genes promote re-establishment of positional information. The head-versus-tail regeneration decision involves preferential wound induction of the Wnt antagonist notum at anterior-facing over posterior-facing wounds. Asymmetric activation of notum represents the earliest known molecular distinction between head and tail regeneration, yet how it occurs is unknown. activin-2 RNAi animals displayed symmetric wound-induced activation of notum at anterior- and posterior-facing wounds, providing a molecular explanation for their ectopic posterior-head phenotype. activin-2 RNAi animals also displayed anterior-posterior (AP) axis splitting, with two heads appearing in anterior blastemas, and various combinations of heads and tails appearing in posterior blastemas. This was associated with ectopic nucleation of anterior poles, which are head-tip muscle cells that facilitate AP and medial-lateral (ML) pattern at posterior-facing wounds. These findings reveal a role for Activin signaling in determining the outcome of AP-axis-patterning events that are specific to regeneration.


Asunto(s)
Activinas/genética , Activinas/metabolismo , Tipificación del Cuerpo/genética , Planarias/fisiología , Regeneración/genética , Animales , Técnica del Anticuerpo Fluorescente , Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Interferencia de ARN , Proteínas Wnt/metabolismo
8.
Nature ; 551(7682): 623-628, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29168507

RESUMEN

The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.


Asunto(s)
Músculos/fisiología , Planarias/anatomía & histología , Planarias/fisiología , Regeneración/fisiología , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Cabeza/fisiología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Músculos/citología , Proteína MioD/genética , Proteína MioD/metabolismo , Planarias/citología , Planarias/genética , Interferencia de ARN , Regeneración/genética , Transducción de Señal
9.
PLoS Genet ; 15(10): e1008401, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626630

RESUMEN

Wnt signaling regulates primary body axis formation across the Metazoa, with high Wnt signaling specifying posterior identity. Whether a common Wnt-driven transcriptional program accomplishes this broad role is poorly understood. We identified genes acutely affected after Wnt signaling inhibition in the posterior of two regenerative species, the planarian Schmidtea mediterranea and the acoel Hofstenia miamia, which are separated by >550 million years of evolution. Wnt signaling was found to maintain positional information in muscle and regional gene expression in multiple differentiated cell types. sp5, Hox genes, and Wnt pathway components are down-regulated rapidly after ß-catenin RNAi in both species. Brachyury, a vertebrate Wnt target, also displays Wnt-dependent expression in Hofstenia. sp5 inhibits trunk gene expression in the tail of planarians and acoels, promoting separate tail-trunk body domains. A planarian posterior Hox gene, Post-2d, promotes normal tail regeneration. We propose that common regulation of a small gene set-Hox, sp5, and Brachyury-might underlie the widespread utilization of Wnt signaling in primary axis patterning across the Bilateria.


Asunto(s)
Tipificación del Cuerpo/genética , Genes Homeobox/genética , Planarias/genética , Regeneración/genética , Animales , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Desarrollo de Músculos/genética , Proteínas Nucleares/genética , Planarias/crecimiento & desarrollo , Proteínas Wnt/genética , Vía de Señalización Wnt/genética
10.
Genes Dev ; 26(9): 988-1002, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22549959

RESUMEN

Planarians are capable of regenerating any missing body part and present an attractive system for molecular investigation of regeneration initiation. The gene activation program that occurs at planarian wounds to coordinate regenerative responses remains unknown. We identified a large set of wound-induced genes during regeneration initiation in planarians. Two waves of wound-induced gene expression occurred in differentiated tissues. The first wave includes conserved immediate early genes. Many second-wave genes encode conserved patterning factors required for proper regeneration. Genes of both classes were generally induced by wounding, indicating that a common initial gene expression program is triggered regardless of missing tissue identity. Planarian regeneration uses a population of regenerative cells (neoblasts), including pluripotent stem cells. A class of wound-induced genes was activated directly within neoblasts, including the Runx transcription factor-encoding runt-1 gene. runt-1 was required for specifying different cell types during regeneration, promoting heterogeneity in neoblasts near wounds. Wound-induced gene expression in neoblasts, including that of runt-1, required SRF (serum response factor) and sos-1. Taken together, these data connect wound sensation to the activation of specific cell type regeneration programs in neoblasts. Most planarian wound-induced genes are conserved across metazoans, and identified genes and mechanisms should be important broadly for understanding wound signaling and regeneration initiation.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación de la Expresión Génica , Planarias/genética , Planarias/fisiología , Cicatrización de Heridas/genética , Animales , Ojo/crecimiento & desarrollo , Expresión Génica , Neuronas/fisiología , Biosíntesis de Proteínas/genética , Factor de Respuesta Sérica
11.
Development ; 142(6): 1062-72, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25725068

RESUMEN

Regeneration requires that the identities of new cells are properly specified to replace missing tissues. The Wnt signaling pathway serves a central role in specifying posterior cell fates during planarian regeneration. We identified a gene encoding a homolog of the Teashirt family of zinc-finger proteins in the planarian Schmidtea mediterranea to be a target of Wnt signaling in intact animals and at posterior-facing wounds. Inhibition of Smed-teashirt (teashirt) by RNA interference (RNAi) resulted in the regeneration of heads in place of tails, a phenotype previously observed with RNAi of the Wnt pathway genes ß-catenin-1, wnt1, Dvl-1/2 or wntless. teashirt was required for ß-catenin-1-dependent activation of posterior genes during regeneration. These findings identify teashirt as a transcriptional target of Wnt signaling required for Wnt-mediated specification of posterior blastemas.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Planarias/fisiología , Regeneración/fisiología , Vía de Señalización Wnt/fisiología , Dedos de Zinc/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Cabeza/fisiología , Proteínas de Homeodominio/genética , Hibridación in Situ , Planarias/genética , Análisis de Componente Principal , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cola (estructura animal)/metabolismo , Cola (estructura animal)/fisiología , Dedos de Zinc/genética
12.
PLoS Genet ; 10(1): e1003999, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24415944

RESUMEN

Planarian regeneration requires positional information to specify the identity of tissues to be replaced as well as pluripotent neoblasts capable of differentiating into new cell types. We found that wounding elicits rapid expression of a gene encoding a Forkhead-family transcription factor, FoxD. Wound-induced FoxD expression is specific to the ventral midline, is regulated by Hedgehog signaling, and is neoblast-independent. FoxD is subsequently expressed within a medial subpopulation of neoblasts at wounds involving head regeneration. Ultimately, FoxD is co-expressed with multiple anterior markers at the anterior pole. Inhibition of FoxD with RNA interference (RNAi) results in the failure to specify neoblasts expressing anterior markers (notum and prep) and in anterior pole formation defects. FoxD(RNAi) animals fail to regenerate a new midline and to properly pattern the anterior blastema, consistent with a role for the anterior pole in organizing pattern of the regenerating head. Our results suggest that wound signaling activates a forkhead transcription factor at the midline and, if the head is absent, FoxD promotes specification of neoblasts at the prior midline for anterior pole regeneration.


Asunto(s)
Factores de Transcripción Forkhead/biosíntesis , Proteínas del Helminto/biosíntesis , Regeneración/genética , Heridas y Lesiones/genética , Animales , Diferenciación Celular , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/biosíntesis , Proteínas Hedgehog/genética , Proteínas del Helminto/genética , Planarias/genética , Planarias/fisiología , Interferencia de ARN , Transducción de Señal/genética , Células Madre
13.
Development ; 140(5): 951-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23404104

RESUMEN

Planarians are flatworms capable of regenerating all body parts. Planarian regeneration requires neoblasts, a population of dividing cells that has been studied for over a century. Neoblast progeny generate new cells of blastemas, which are the regenerative outgrowths at wounds. If the neoblasts comprise a uniform population of cells during regeneration (e.g. they are all uncommitted and pluripotent), then specialization of new cell types should occur in multipotent, non-dividing neoblast progeny cells. By contrast, recent data indicate that some neoblasts express lineage-specific transcription factors during regeneration and in uninjured animals. These observations raise the possibility that an important early step in planarian regeneration is the specialization of neoblasts to produce specified rather than naïve blastema cells.


Asunto(s)
Regeneración/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Humanos , Modelos Biológicos , Especificidad de Órganos/genética , Especificidad de Órganos/fisiología , Planarias/citología , Planarias/genética , Planarias/metabolismo , Planarias/fisiología , Regeneración/genética , Células Madre/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
14.
Development ; 140(4): 719-29, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23318641

RESUMEN

Planarian regeneration involves regionalized gene expression that specifies the body plan. After amputation, planarians are capable of regenerating new anterior and posterior poles, as well as tissues polarized along the anterior-posterior, dorsal-ventral and medial-lateral axes. Wnt and several Hox genes are expressed at the posterior pole, whereas Wnt inhibitory genes, Fgf inhibitory genes, and prep, which encodes a TALE-family homeodomain protein, are expressed at the anterior pole. We found that Smed-pbx (pbx for short), which encodes a second planarian TALE-family homeodomain transcription factor, is required for restored expression of these genes at anterior and posterior poles during regeneration. Moreover, pbx(RNAi) animals gradually lose pole gene expression during homeostasis. By contrast, pbx was not required for initial anterior-posterior polarized responses to wounds, indicating that pbx is required after wound responses for development and maintenance of poles during regeneration and homeostatic tissue turnover. Independently of the requirement for pbx in pole regeneration, pbx is required for eye precursor formation and, consequently, eye regeneration and eye replacement in homeostasis. Together, these data indicate that pbx promotes pole formation of body axes and formation of regenerative progenitors for eyes.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Fenómenos Fisiológicos Oculares , Planarias/fisiología , Regeneración/fisiología , Factores de Transcripción/metabolismo , Animales , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Interferencia de ARN
15.
Trends Genet ; 27(7): 277-85, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21680047

RESUMEN

Planarians are flatworms that constitutively maintain adult tissues through cell turnover and can regenerate entire organisms from tiny body fragments. In addition to requiring new cells (from neoblasts), these feats require mechanisms that specify tissue identity in the adult. Crucial roles for Wnt and BMP signaling in the regeneration and maintenance of the body axes have been uncovered, among other regulatory factors. Available data indicate that genes involved in positional identity regulation at key embryonic stages in other animals display persisting regionalized expression in adult planarians. These expression patterns suggest that a constitutively active gene expression map exists for the maintenance of the planarian body. Planarians thus present a fertile ground for the identification of factors regulating the regionalization of the metazoan body plan and for the study of the attributes of these factors that can lead to the maintenance and regeneration of adult tissues.


Asunto(s)
Envejecimiento , Regulación del Desarrollo de la Expresión Génica , Especiación Genética , Planarias/crecimiento & desarrollo , Planarias/genética , Animales , Humanos , Modelos Genéticos , Especificidad de Órganos
16.
Development ; 138(20): 4387-98, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21937596

RESUMEN

Planarians can regenerate any missing body part, requiring mechanisms for the production of organ systems in the adult, including their prominent tubule-based filtration excretory system called protonephridia. Here, we identify a set of genes, Six1/2-2, POU2/3, hunchback, Eya and Sall, that encode transcription regulatory proteins that are required for planarian protonephridia regeneration. During regeneration, planarian stem cells are induced to form a cell population in regeneration blastemas expressing Six1/2-2, POU2/3, Eya, Sall and Osr that is required for excretory system formation. POU2/3 and Six1/2-2 are essential for these precursor cells to form. Eya, Six1/2-2, Sall, Osr and POU2/3-related genes are required for vertebrate kidney development. We determined that planarian and vertebrate excretory cells express homologous proteins involved in reabsorption and waste modification. Furthermore, we identified novel nephridia genes. Our results identify a transcriptional program and cellular mechanisms for the regeneration of an excretory organ and suggest that metazoan excretory systems are regulated by genetic programs that share a common evolutionary origin.


Asunto(s)
Planarias/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Planarias/citología , Planarias/genética , Planarias/crecimiento & desarrollo , Interferencia de ARN , Regeneración/genética , Regeneración/fisiología , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética
17.
PLoS Genet ; 7(8): e1002226, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21852957

RESUMEN

Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation and regeneration. We identified two genes encoding transcription factors, sp6-9 and dlx, that were expressed in the eye specifically in the optic cup and not the photoreceptor neurons. RNAi of these genes prevented formation of visible optic cups during regeneration. Planarian regeneration requires an adult proliferative cell population with stem cell-like properties called the neoblasts. We found that optic cup formation occurred only after migration of progressively differentiating progenitor cells from the neoblast population. The eye regeneration defect caused by dlx and sp6-9 RNAi can be explained by a failure to generate these early optic cup progenitors. Dlx and Sp6-9 genes function as a module during the development of diverse animal appendages, including vertebrate and insect limbs. Our work reveals a novel function for this gene pair in the development of a fundamental eye component, and it utilizes these genes to demonstrate a mechanism for total organ regeneration in which extensive cell movement separates new cell specification from organ morphogenesis.


Asunto(s)
Proteínas del Helminto/genética , Fenómenos Fisiológicos Oculares , Planarias/genética , Regeneración/genética , Factores de Transcripción/genética , Animales , Arrestina/metabolismo , Diferenciación Celular , Expresión Génica , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Neuronas/metabolismo , Planarias/citología , Planarias/fisiología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
18.
Cell Rep ; 43(3): 113843, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38401119

RESUMEN

Whole-body regeneration requires the ability to produce the full repertoire of adult cell types. The planarian Schmidtea mediterranea contains over 125 cell types, which can be regenerated from a stem cell population called neoblasts. Neoblast fate choice can be regulated by the expression of fate-specific transcription factors (FSTFs). How fate choices are made and distributed across neoblasts versus their post-mitotic progeny remains unclear. We used single-cell RNA sequencing to systematically map fate choices made in S/G2/M neoblasts and, separately, in their post-mitotic progeny that serve as progenitors for all adult cell types. We defined transcription factor expression signatures associated with all detected fates, identifying numerous new progenitor classes and FSTFs that regulate them. Our work generates an atlas of stem cell fates with associated transcription factor signatures for most cell types in a complete adult organism.


Asunto(s)
Planarias , Factores de Transcripción , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Planarias/metabolismo , Células Madre/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica
19.
Development ; 137(8): 1231-41, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20223763

RESUMEN

Freshwater planarians are able to regenerate any missing part of their body and have extensive tissue turnover because of the action of dividing cells called neoblasts. Neoblasts provide an excellent system for in vivo study of adult stem cell biology. We identified the Smed-CHD4 gene, which is predicted to encode a chromatin-remodeling protein similar to CHD4/Mi-2 proteins, as required for planarian regeneration and tissue homeostasis. Following inhibition of Smed-CHD4 with RNA interference (RNAi), neoblast numbers were initially normal, despite an inability of the animals to regenerate. However, the proliferative response of neoblasts to amputation or growth stimulation in Smed-CHD4(RNAi) animals was diminished. Smed-CHD4(RNAi) animals displayed a dramatic reduction in the numbers of certain neoblast progeny cells. Smed-CHD4 was required for the formation of these neoblast progeny cells. Together, these results indicate that Smed-CHD4 is required for neoblasts to produce progeny cells committed to differentiation in order to control tissue turnover and regeneration and suggest a crucial role for CHD4 proteins in stem cell differentiation.


Asunto(s)
Autoantígenos/genética , Planarias/genética , Células Madre/citología , Animales , Bromodesoxiuridina , Diferenciación Celular , División Celular , ADN Helicasas/genética , Citometría de Flujo , Planarias/citología , Planarias/fisiología , Reacción en Cadena de la Polimerasa , ARN/genética
20.
Nat Commun ; 14(1): 7422, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973979

RESUMEN

Regeneration requires mechanisms for producing a wide array of cell types. Neoblasts are stem cells in the planarian Schmidtea mediterranea that undergo fate specification to produce over 125 adult cell types. Fate specification in neoblasts can be regulated through expression of fate-specific transcription factors. We utilize multiplexed error-robust fluorescence in situ hybridization (MERFISH) and whole-mount FISH to characterize fate choice distribution of stem cells within planarians. Fate choices are often made distant from target tissues and in a highly intermingled manner, with neighboring neoblasts frequently making divergent fate choices for tissues of different location and function. We propose that pattern formation is driven primarily by the migratory assortment of progenitors from mixed and spatially distributed fate-specified stem cells and that fate choice involves stem-cell intrinsic processes.


Asunto(s)
Planarias , Animales , Planarias/genética , Planarias/metabolismo , Hibridación Fluorescente in Situ , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA