Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 144(2): 216-226, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38648571

RESUMEN

ABSTRACT: Triple-negative breast cancer (TNBC) is an aggressive tumor entity in which immune checkpoint (IC) molecules are primarily synthesized in the tumor environment. Here, we report that procoagulant platelets bear large amounts of such immunomodulatory factors and that the presence of these cellular blood components in TNBC relates to protumorigenic immune-cell activity and impaired survival. Mechanistically, tumor-released nucleic acids attract platelets to the aberrant tumor microvasculature, where they undergo procoagulant activation, thus delivering specific stimulatory and inhibitory IC molecules. This concomitantly promotes protumorigenic myeloid leukocyte responses and compromises antitumorigenic lymphocyte activity, ultimately supporting tumor growth. Interference with platelet-leukocyte interactions prevented immune cell misguidance and suppressed tumor progression, nearly as effective as systemic IC inhibition. Hence, our data uncover a self-sustaining mechanism of TNBC by using platelets to misdirect immune-cell responses. Targeting this irregular multicellular interplay may represent a novel immunotherapeutic strategy for TNBC without the adverse effects of systemic IC inhibition.


Asunto(s)
Plaquetas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Humanos , Plaquetas/inmunología , Plaquetas/patología , Plaquetas/metabolismo , Femenino , Ratones , Animales , Escape del Tumor , Línea Celular Tumoral , Evasión Inmune
2.
J Cell Sci ; 134(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34704600

RESUMEN

Osteoclasts form special integrin-mediated adhesion structures called sealing zones that enable them to adhere to and resorb bone. Sealing zones consist of densely packed podosomes tightly interconnected by actin fibers. Their formation requires the presence of the hematopoietic integrin regulator kindlin-3 (also known as Fermt3). In this study, we investigated osteoclasts and their adhesion structures in kindlin-3 hypomorphic mice expressing only 5-10% of the kindlin-3 level of wild-type mice. Low kindlin-3 expression reduces integrin activity, results in impaired osteoclast adhesion and signaling, and delays cell spreading. Despite these defects, in vitro-generated kindlin-3-hypomorphic osteoclast-like cells arrange their podosomes into adhesion patches and belts, but their podosome and actin organization is abnormal. Remarkably, kindlin-3-hypomorphic osteoclasts form sealing zones when cultured on calcified matrix in vitro and on bone surface in vivo. However, functional assays, immunohistochemical staining and electron micrographs of bone sections showed that they fail to seal the resorption lacunae properly, which is required for secreted proteinases to digest bone matrix. This results in mild osteopetrosis. Our study reveals a new, hitherto understudied function of kindlin-3 as an essential organizer of integrin-mediated adhesion structures, such as sealing zones.


Asunto(s)
Proteínas del Citoesqueleto , Osteoclastos , Osteopetrosis , Animales , Matriz Ósea , Huesos , Proteínas del Citoesqueleto/genética , Integrinas , Ratones , Osteopetrosis/genética
3.
J Biomed Sci ; 30(1): 21, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978029

RESUMEN

BACKGROUND: The microvascular endothelium inherently controls nutrient delivery, oxygen supply, and immune surveillance of malignant tumors, thus representing both biological prerequisite and therapeutic vulnerability in cancer. Recently, cellular senescence emerged as a fundamental characteristic of solid malignancies. In particular, tumor endothelial cells have been reported to acquire a senescence-associated secretory phenotype, which is characterized by a pro-inflammatory transcriptional program, eventually promoting tumor growth and formation of distant metastases. We therefore hypothesize that senescence of tumor endothelial cells (TEC) represents a promising target for survival prognostication and prediction of immunotherapy efficacy in precision oncology. METHODS: Published single-cell RNA sequencing datasets of different cancer entities were analyzed for cell-specific senescence, before generating a pan-cancer endothelial senescence-related transcriptomic signature termed EC.SENESCENCE.SIG. Utilizing this signature, machine learning algorithms were employed to construct survival prognostication and immunotherapy response prediction models. Machine learning-based feature selection algorithms were applied to select key genes as prognostic biomarkers. RESULTS: Our analyses in published transcriptomic datasets indicate that in a variety of cancers, endothelial cells exhibit the highest cellular senescence as compared to tumor cells or other cells in the vascular compartment of malignant tumors. Based on these findings, we developed a TEC-associated, senescence-related transcriptomic signature (EC.SENESCENCE.SIG) that positively correlates with pro-tumorigenic signaling, tumor-promoting dysbalance of immune cell responses, and impaired patient survival across multiple cancer entities. Combining clinical patient data with a risk score computed from EC.SENESCENCE.SIG, a nomogram model was constructed that enhanced the accuracy of clinical survival prognostication. Towards clinical application, we identified three genes as pan-cancer biomarkers for survival probability estimation. As therapeutic perspective, a machine learning model constructed on EC.SENESCENCE.SIG provided superior pan-cancer prediction for immunotherapy response than previously published transcriptomic models. CONCLUSIONS: We here established a pan-cancer transcriptomic signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Neoplasias/terapia , Células Endoteliales , Medicina de Precisión , Inmunoterapia , Senescencia Celular , Endotelio , Pronóstico
4.
J Biomed Sci ; 30(1): 72, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620936

RESUMEN

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) of malignant cells is a driving force of disease progression in human papillomavirus-negative (HPV-negative) head and neck squamous cell carcinomas (HNSCC). Sustained hyper-activation of epidermal growth factor receptor (EGFR) induces an invasion-promoting subtype of EMT (EGFR-EMT) characterized by a gene signature ("'EGFR-EMT_Signature'") comprising 5´-ectonucleotidase CD73. Generally, CD73 promotes immune evasion via adenosine (ADO) formation and associates with EMT and metastases. However, CD73 regulation through EGFR signaling remains under-explored and targeting options are amiss. METHODS: CD73 functions in EGFR-mediated tumor cell dissemination were addressed in 2D and 3D cellular models of migration and invasion. The novel antagonizing antibody 22E6 and therapeutic antibody Cetuximab served as inhibitors of CD73 and EGFR, respectively, in combinatorial treatment. Specificity for CD73 and its role as effector or regulator of EGFR-EMT were assessed upon CD73 knock-down and over-expression. CD73 correlation to tumor budding was studied in an in-house primary HNSCC cohort. Expression correlations, and prognostic and predictive values were analyzed using machine learning-based algorithms and Kaplan-Meier survival curves in single cell and bulk RNA sequencing datasets. RESULTS: CD73/NT5E is induced by the EGF/EGFR-EMT-axis and blocked by Cetuximab and MEK inhibitor. Inhibition of CD73 with the novel antagonizing antibody 22E6 specifically repressed EGFR-dependent migration and invasion of HNSCC cells in 2D. Cetuximab and 22E6 alone reduced local invasion in a 3D-model. Interestingly, combining inefficient low-dose concentrations of Cetuximab and 22E6 revealed highly potent in invasion inhibition, substantially reducing the functional IC50 of Cetuximab regarding local invasion. A role for CD73 as an effector of EGFR-EMT in local invasion was further supported by knock-down and over-expression experiments in vitro and by high expression in malignant cells budding from primary tumors. CD73 expression correlated with EGFR pathway activity, EMT, and partial EMT (p-EMT) in malignant single HNSCC cells and in large patient cohorts. Contrary to published data, CD73 was not a prognostic marker of overall survival (OS) in the TCGA-HNSCC cohort when patients were stratified for HPV-status. However, CD73 prognosticated OS of oral cavity carcinomas. Furthermore, CD73 expression levels correlated with response to Cetuximab in HPV-negative advanced, metastasized HNSCC patients. CONCLUSIONS: In sum, CD73 is an effector of EGF/EGFR-mediated local invasion and a potential therapeutic target and candidate predictive marker for advanced HPV-negative HNSCC.


Asunto(s)
5'-Nucleotidasa , Proteínas Ligadas a GPI , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , 5'-Nucleotidasa/genética , Cetuximab , Factor de Crecimiento Epidérmico , Receptores ErbB/genética , Proteínas Ligadas a GPI/genética , Neoplasias de Cabeza y Cuello/genética , Infecciones por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
5.
Mol Cancer ; 21(1): 178, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076232

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) is both a driver oncogene and a therapeutic target in advanced head and neck squamous cell carcinoma (HNSCC). However, response to EGFR treatment is inconsistent and lacks markers for treatment prediction. This study investigated EGFR-induced epithelial-to-mesenchymal transition (EMT) as a central parameter in tumor progression and identified novel prognostic and therapeutic targets, and a candidate predictive marker for EGFR therapy response. METHODS: Transcriptomic profiles were analyzed by RNA sequencing (RNA-seq) following EGFR-mediated EMT in responsive human HNSCC cell lines. Exclusive genes were extracted via differentially expressed genes (DEGs) and a risk score was determined through forward feature selection and Cox regression models in HNSCC cohorts. Functional characterization of selected prognostic genes was conducted in 2D and 3D cellular models, and findings were validated by immunohistochemistry in primary HNSCC. RESULTS: An EGFR-mediated EMT gene signature composed of n = 171 genes was identified in responsive cell lines and transferred to the TCGA-HNSCC cohort. A 5-gene risk score comprising DDIT4, FADD, ITGB4, NCEH1, and TIMP1 prognosticated overall survival (OS) in TCGA and was confirmed in independent HNSCC cohorts. The EGFR-mediated EMT signature was distinct from EMT hallmark and partial EMT (pEMT) meta-programs with a differing enrichment pattern in single malignant cells. Molecular characterization showed that ITGB4 was upregulated in primary tumors and metastases compared to normal mucosa and correlated with EGFR/MAPK activity in tumor bulk and single malignant cells. Preferential localization of ITGB4 together with its ligand laminin 5 at tumor-stroma interfaces correlated with increased tumor budding in primary HNSCC tissue sections. In vitro, ITGB4 knock-down reduced EGFR-mediated migration and invasion and ITGB4-antagonizing antibody ASC8 impaired 2D and 3D invasion. Furthermore, a logistic regression model defined ITGB4 as a predictive marker of progression-free survival in response to Cetuximab in recurrent metastatic HNSCC patients. CONCLUSIONS: EGFR-mediated EMT conveyed through MAPK activation contributes to HNSCC progression upon induction of migration and invasion. A 5-gene risk score based on a novel EGFR-mediated EMT signature prognosticated survival of HNSCC patients and determined ITGB4 as potential therapeutic and predictive target in patients with strong EGFR-mediated EMT.


Asunto(s)
Neoplasias de Cabeza y Cuello , Transcriptoma , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Recurrencia Local de Neoplasia/genética , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
6.
Br J Cancer ; 126(8): 1186-1195, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35132238

RESUMEN

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) remain a substantial burden to global health. Cell-free circulating tumour DNA (ctDNA) is an emerging biomarker but has not been studied sufficiently in HNSCC. METHODS: We conducted a single-centre prospective cohort study to investigate ctDNA in patients with p16-negative HNSCC who received curative-intent primary surgical treatment. Whole-exome sequencing was performed on formalin-fixed paraffin-embedded (FFPE) tumour tissue. We utilised RaDaRTM, a highly sensitive personalised assay using deep sequencing for tumour-specific variants, to analyse serial pre- and post-operative plasma samples for evidence of minimal residual disease and recurrence. RESULTS: In 17 patients analysed, personalised panels were designed to detect 34 to 52 somatic variants. Data show ctDNA detection in baseline samples taken prior to surgery in 17 of 17 patients. In post-surgery samples, ctDNA could be detected at levels as low as 0.0006% variant allele frequency. In all cases with clinical recurrence to date, ctDNA was detected prior to progression, with lead times ranging from 108 to 253 days. CONCLUSIONS: This study illustrates the potential of ctDNA as a biomarker for detecting minimal residual disease and recurrence in HNSCC and demonstrates the feasibility of personalised ctDNA assays for the detection of disease prior to clinical recurrence.


Asunto(s)
ADN Tumoral Circulante , Neoplasias de Cabeza y Cuello , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/cirugía , Humanos , Biopsia Líquida , Neoplasia Residual/genética , Estudios Prospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/cirugía
7.
FASEB J ; 35(6): e21656, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34042211

RESUMEN

Chronic inflammation-related diseases are characterized by persistent leukocyte infiltration into the underlying tissue. The vascular endothelium plays a major role in this pathophysiological condition. Only few therapeutic strategies focus on the vascular endothelium as a major target for an anti-inflammatory approach. In this study, we present the natural compound-derived carbazole derivative C81 as chemical modulator interfering with leukocyte-endothelial cell interactions. An in vivo assay employing intravital microscopy to monitor leukocyte trafficking after C81 treatment in postcapillary venules of a murine cremaster muscle was performed. Moreover, in vitro assays using HUVECs and monocytes were implemented. The impact of C81 on cell adhesion molecules and the NFκB signaling cascade was analyzed in vitro in endothelial cells. Effects of C81 on protein translation were determined by incorporation of a puromycin analog-based approach and polysome profiling. We found that C81 significantly reduced TNF-activated leukocyte trafficking in postcapillary venules. Similar results were obtained in vitro when C81 reduced leukocyte-endothelial cell interactions by down-regulating cell adhesion molecules. Focusing on the NFκB signaling cascade, we found that C81 reduced the activation on multiple levels of the cascade through promoted IκBα recovery by attenuation of IκBα ubiquitination and through reduced protein levels of TNFR1 caused by protein translation inhibition. We suggest that C81 might represent a promising lead compound for interfering with inflammation-related processes in endothelial cells by down-regulation of IκBα ubiquitination on the one hand and inhibition of translation on the other hand without exerting cytotoxic effects.


Asunto(s)
Carbazoles/farmacología , Adhesión Celular , Endotelio Vascular/fisiología , Inflamación/inmunología , Leucocitos/fisiología , FN-kappa B/antagonistas & inhibidores , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Animales , Comunicación Celular , Movimiento Celular , Endotelio Vascular/efectos de los fármacos , Leucocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Transcriptoma
8.
HNO ; 70(2): 87-93, 2022 Feb.
Artículo en Alemán | MEDLINE | ID: mdl-34374811

RESUMEN

BACKGROUND: The continued advancement of digitalization increasingly allows deployment of artificial intelligence (AI) algorithms, leveraging profound effects on society and medicine. OBJECTIVE: This article aims to provide an overview of current developments and futures perspectives of AI in otorhinolaryngology. MATERIALS AND METHODS: Scientific studies and expert analyses were evaluated and discussed. RESULTS: AI can increase the value of current diagnostic tools in otorhinolaryngology and enhance surgical precision in head and neck surgery. CONCLUSION: AI has the potential to further improve diagnostic and therapeutic procedures in otorhinolaryngology. This technology, however, is associated with challenges, for example in the domain of privacy and data security.


Asunto(s)
Medicina , Otolaringología , Algoritmos , Inteligencia Artificial , Predicción
9.
HNO ; 70(9): 691-695, 2022 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-35579675

RESUMEN

We report the case of an 11-year-old girl with difficultly speaking and a history of singular, self-limiting oral bleeding. Clinical and radiological examination in the emergency room showed a vascularized tumor of the base of the tongue, which almost completely occluded the oropharynx. After complex anesthesiologic preparation and endoluminal embolization, the tumor was safely removed by transoral laser microsurgery. Histology revealed a rare benign schwannoma of the oropharynx. Further clinical examinations and genetic screening were recommended.


Asunto(s)
Neurilemoma , Neoplasias de la Lengua , Niño , Femenino , Humanos , Cuello , Neurilemoma/cirugía , Faringe/patología , Lengua , Neoplasias de la Lengua/diagnóstico , Neoplasias de la Lengua/patología , Neoplasias de la Lengua/cirugía
10.
Haematologica ; 106(10): 2641-2653, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32703799

RESUMEN

The recruitment of neutrophils from the microvasculature to the site of injury or infection represents a key event in the inflammatory response. Vitronectin (VN) is a multifunctional macromolecule abundantly present in blood and extracellular matrix. The role of this glycoprotein in the extravasation process of circulating neutrophils remains elusive. Employing advanced in vivo/ex vivo imaging techniques in different mouse models as well as in vitro methods, we uncovered a previously unrecognized function of VN in the transition of dynamic to static intravascular interactions of neutrophils with microvascular endothelial cells. These distinct properties of VN require the heteromerization of this glycoprotein with plasminogen activator inhibitor-1 (PAI- 1) on the activated venular endothelium and subsequent interactions of this protein complex with the scavenger receptor low-density lipoprotein receptor-related protein-1 on intravascularly adhering neutrophils. This induces p38 mitogen-activated protein kinases-dependent intracellular signaling events which, in turn, regulates the proper clustering of the b2 integrin lymphocyte function associated antigen-1 on the surface of these immune cells. As a consequence of this molecular interplay, neutrophils become able to stabilize their adhesion to the microvascular endothelium and, subsequently, to extravasate to the perivascular tissue. Hence, endothelial-bound VN-PAI-1 heteromers stabilize intravascular adhesion of neutrophils by coordinating b2 integrin clustering on the surface of these immune cells, thereby effectively controlling neutrophil trafficking to inflamed tissue. Targeting this protein complex might be beneficial for the prevention and treatment of inflammatory pathologies.


Asunto(s)
Antígenos CD18 , Vitronectina , Animales , Adhesión Celular , Análisis por Conglomerados , Células Endoteliales , Ratones , Neutrófilos
11.
Laryngorhinootologie ; 100(S 01): S1-S24, 2021 04.
Artículo en Inglés, Alemán | MEDLINE | ID: mdl-34352905

RESUMEN

Diseases occurring with an incidence of less than 1-10 cases per 10 000 individuals are considered as rare. Currently, between 5 000 and 8 000 rare or orphan diseases are known, every year about 250 rare diseases are newly described. Many of those pathologies concern the head and neck area. In many cases, a long time is required to diagnose an orphan disease. The lives of patients who are affected by those diseases are often determined by medical consultations and inpatient stays. Most orphan diseases are of genetic origin and cannot be cured despite medical progress. However, during the last years, the perception of and the knowledge about rare diseases has increased also due to the fact that publicly available databases have been created and self-help groups have been established which foster the autonomy of affected people. Only recently, innovative technical progress in the field of biogenetics allows individually characterizing the genetic origin of rare diseases in single patients. Based on this, it should be possible in the near future to elaborate tailored treatment concepts for patients suffering from rare diseases in the sense of translational and personalized medicine. This article deals with orphan diseases of the lip, oral cavity, pharynx, and cervical soft tissues depicting these developments. The readers will be provided with a compact overview about selected diseases of these anatomical regions. References to further information for medical staff and affected patients support deeper knowledge and lead to the current state of knowledge in this highly dynamic field.


Asunto(s)
Faringe , Enfermedades Raras , Humanos , Incidencia , Boca , Medicina de Precisión , Enfermedades Raras/terapia
12.
Circulation ; 140(13): 1100-1114, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31401849

RESUMEN

BACKGROUND: The incidence of acute cardiovascular complications is highly time-of-day dependent. However, the mechanisms driving rhythmicity of ischemic vascular events are unknown. Although enhanced numbers of leukocytes have been linked to an increased risk of cardiovascular complications, the role that rhythmic leukocyte adhesion plays in different vascular beds has not been studied. METHODS: We evaluated leukocyte recruitment in vivo by using real-time multichannel fluorescence intravital microscopy of a tumor necrosis factor-α-induced acute inflammation model in both murine arterial and venous macrovasculature and microvasculature. These approaches were complemented with genetic, surgical, and pharmacological ablation of sympathetic nerves or adrenergic receptors to assess their relevance for rhythmic leukocyte adhesion. In addition, we genetically targeted the key circadian clock gene Bmal1 (also known as Arntl) in a lineage-specific manner to dissect the importance of oscillations in leukocytes and components of the vessel wall in this process. RESULTS: In vivo quantitative imaging analyses of acute inflammation revealed a 24-hour rhythm in leukocyte recruitment to arteries and veins of the mouse macrovasculature and microvasculature. Unexpectedly, although in arteries leukocyte adhesion was highest in the morning, it peaked at night in veins. This phase shift was governed by a rhythmic microenvironment and a vessel type-specific oscillatory pattern in the expression of promigratory molecules. Differences in cell adhesion molecules and leukocyte adhesion were ablated when disrupting sympathetic nerves, demonstrating their critical role in this process and the importance of ß2-adrenergic receptor signaling. Loss of the core clock gene Bmal1 in leukocytes, endothelial cells, or arterial mural cells affected the oscillations in a vessel type-specific manner. Rhythmicity in the intravascular reactivity of adherent leukocytes resulted in increased interactions with platelets in the morning in arteries and in veins at night with a higher predisposition to acute thrombosis at different times as a consequence. CONCLUSIONS: Together, our findings point to an important and previously unrecognized role of artery-associated sympathetic innervation in governing rhythmicity in vascular inflammation in both arteries and veins and its potential implications in the occurrence of time-of-day-dependent vessel type-specific thrombotic events.


Asunto(s)
Arterias/inmunología , Endotelio Vascular/metabolismo , Inflamación/inmunología , Leucocitos/fisiología , Trombosis/fisiopatología , Venas/inmunología , Animales , Arterias/inervación , Arterias/patología , Adhesión Celular , Células Cultivadas , Relojes Circadianos , Endotelio Vascular/patología , Regulación de la Expresión Génica , Humanos , Microscopía Intravital , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodicidad , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervioso Simpático , Factor de Necrosis Tumoral alfa/metabolismo , Venas/inervación , Venas/patología
13.
Blood ; 132(26): 2754-2762, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30442677

RESUMEN

Targeting Talin1 to the plasma membrane is a crucial step in integrin activation, which in leukocytes is mediated by a Rap1/RIAM/Talin1 pathway, whereas in platelets, it is RIAM independent. Recent structural, biochemical, and cell biological studies have suggested direct Rap1/Talin1 interaction as an alternative mechanism to recruit Talin1 to the membrane and induce integrin activation. To test whether this pathway is of relevance in vivo, we generated Rap1 binding-deficient Talin1 knockin (Tln13mut) mice. Although Tln13mut mice showed no obvious abnormalities, their platelets exhibited reduced integrin activation, aggregation, adhesion, and spreading, resulting in prolonged tail-bleeding times and delayed thrombus formation and vessel occlusion in vivo. Surprisingly, neutrophil adhesion to different integrin ligands and ß2 integrin-dependent phagocytosis were also significantly impaired, which caused profound leukocyte adhesion and extravasation defects in Tln13mut mice. In contrast, macrophages exhibited no defect in adhesion or spreading despite reduced integrin activation. Taken together, our findings suggest that direct Rap1/Talin1 interaction is of particular importance in regulating the activity of different integrin classes expressed on platelets and neutrophils, which both depend on fast and dynamic integrin-mediated responses.


Asunto(s)
Plaquetas/metabolismo , Antígenos CD18/metabolismo , Hemorragia/metabolismo , Neutrófilos/metabolismo , Talina/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Plaquetas/patología , Antígenos CD18/genética , Adhesión Celular/genética , Hemorragia/genética , Hemorragia/patología , Ratones , Ratones Mutantes , Neutrófilos/patología , Fagocitosis/genética , Talina/genética , Proteínas de Unión al GTP rap1/genética
14.
FASEB J ; 33(8): 8771-8781, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31017817

RESUMEN

The alkaloid narciclasine has been characterized extensively as an anticancer compound. Accumulating evidence suggests that narciclasine has anti-inflammatory potential; however, the underlying mechanism remains poorly understood. We hypothesized that narciclasine affects the activation of endothelial cells (ECs), a hallmark of inflammatory processes, which is a prerequisite for leukocyte-EC interaction. Thus, we aimed to investigate narciclasine's action on this process in vivo and to analyze the underlying mechanisms in vitro. In a murine peritonitis model, narciclasine reduced leukocyte infiltration, proinflammatory cytokine expression, and inflammation-associated abdominal pain. Moreover, narciclasine decreased rolling and blocked adhesion and transmigration of leukocytes in vivo. In cultured ECs, narciclasine inhibited the expression of cell adhesion molecules intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin and blocked crucial steps of the NF-κB activation cascade: NF-κB promotor activity, p65 nuclear translocation, inhibitor of κB α (IκBα) phosphorylation and degradation, and IκBα kinase ß and TGF-ß-activated kinase 1 phosphorylation. Interestingly, these effects were based on the narciclasine-triggered loss of TNF receptor 1 (TNFR1). Our study highlights narciclasine as an interesting anti-inflammatory compound that effectively inhibits the interaction of leukocytes with ECs by blocking endothelial activation processes. Most importantly, we showed that the observed inhibitory action of narciclasine on TNF-triggered signaling pathways is based on the loss of TNFR1.-Stark, A., Schwenk, R., Wack, G., Zuchtriegel, G., Hatemler, M. G., Bräutigam, J., Schmidtko, A., Reichel, C. A., Bischoff, I., Fürst, R. Narciclasine exerts anti-inflammatory actions by blocking leukocyte-endothelial cell interactions and down-regulation of the endothelial TNF receptor 1.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Antiinflamatorios/farmacología , Adhesión Celular , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Fenantridinas/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Regulación hacia Abajo , Selectina E/genética , Selectina E/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Células Jurkat , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Células THP-1 , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 38(4): 829-842, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29371242

RESUMEN

OBJECTIVE: Ischemia-reperfusion (I/R) injury significantly contributes to organ dysfunction and failure after myocardial infarction, stroke, and transplantation. In addition to its established role in the fibrinolytic system, plasminogen activator inhibitor-1 has recently been implicated in the pathogenesis of I/R injury. The underlying mechanisms remain largely obscure. APPROACH AND RESULTS: Using different in vivo microscopy techniques as well as ex vivo analyses and in vitro assays, we identified that plasminogen activator inhibitor-1 rapidly accumulates on microvascular endothelial cells on I/R enabling this protease inhibitor to exhibit previously unrecognized functional properties by inducing an increase in the affinity of ß2 integrins in intravascularly rolling neutrophils. These events are mediated through low-density lipoprotein receptor-related protein-1 and mitogen-activated protein kinase-dependent signaling pathways that initiate intravascular adherence of these immune cells to the microvascular endothelium. Subsequent to this process, extravasating neutrophils disrupt endothelial junctions and promote the postischemic microvascular leakage. Conversely, deficiency of plasminogen activator inhibitor-1 effectively reversed leukocyte infiltration, microvascular dysfunction, and tissue injury on experimental I/R without exhibiting side effects on microvascular hemostasis. CONCLUSIONS: Our experimental data provide novel insights into the nonfibrinolytic properties of the fibrinolytic system and emphasize plasminogen activator inhibitor-1 as a promising target for the prevention and treatment of I/R injury.


Asunto(s)
Músculos Abdominales/irrigación sanguínea , Hígado/irrigación sanguínea , Microvasos/metabolismo , Infiltración Neutrófila , Neutrófilos/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Daño por Reperfusión/metabolismo , Músculos Abdominales/metabolismo , Músculos Abdominales/patología , Animales , Antígenos CD18/metabolismo , Permeabilidad Capilar , Línea Celular , Modelos Animales de Enfermedad , Humanos , Cinética , Rodamiento de Leucocito , Hígado/metabolismo , Hígado/patología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/patología , Activación Neutrófila , Neutrófilos/trasplante , Inhibidor 1 de Activador Plasminogénico/deficiencia , Inhibidor 1 de Activador Plasminogénico/genética , Conformación Proteica , Receptores de LDL/metabolismo , Daño por Reperfusión/patología , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
16.
Blood ; 128(19): 2327-2337, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27609642

RESUMEN

Under steady-state conditions, aged neutrophils are removed from the circulation in bone marrow, liver, and spleen, thereby maintaining myeloid cell homeostasis. The fate of these aged immune cells under inflammatory conditions, however, remains largely obscure. Here, we demonstrate that in the acute inflammatory response during endotoxemia, aged neutrophils cease returning to the bone marrow and instead rapidly migrate to the site of inflammation. Having arrived in inflamed tissue, aged neutrophils were found to exhibit a higher phagocytic activity as compared with the subsequently recruited nonaged neutrophils. This distinct behavior of aged neutrophils under inflammatory conditions is dependent on specific age-related changes in their molecular repertoire that enable these "experienced" immune cells to instantly translate inflammatory signals into immune responses. In particular, aged neutrophils engage Toll-like receptor-4- and p38 MAPK-dependent pathways to induce conformational changes in ß2 integrins that allow these phagocytes to effectively accomplish their mission in the front line of the inflammatory response. Hence, ageing in the circulation might represent a critical process for neutrophils that enables these immune cells to properly unfold their functional properties for host defense.


Asunto(s)
Senescencia Celular , Inflamación/inmunología , Inflamación/patología , Neutrófilos/inmunología , Enfermedad Aguda , Animales , Antígeno CD11b/metabolismo , Adhesión Celular , Membrana Celular/metabolismo , Rastreo Celular , Citocinas/metabolismo , Integrinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(47): 16836-41, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385600

RESUMEN

Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.


Asunto(s)
Apoptosis , Túbulos Renales/citología , Animales , Peso Corporal , Caspasa 8/genética , Caspasa 8/fisiología , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/fisiología , Ratones , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Daño por Reperfusión/prevención & control
19.
Arterioscler Thromb Vasc Biol ; 35(4): 899-910, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25722429

RESUMEN

OBJECTIVE: Leukocyte recruitment to the site of inflammation is a key event in a variety of cardiovascular pathologies. Infiltrating neutrophils constitute the first line of defense that precedes a second wave of emigrating monocytes reinforcing the inflammatory reaction. The mechanisms initiating this sequential process remained largely obscure. APPROACH AND RESULTS: Using advanced in vivo microscopy and in vitro/ex vivo techniques, we identified individual spatiotemporal expression patterns of selectins and their principal interaction partners on neutrophils, resident/inflammatory monocytes, and endothelial cells. Coordinating the intraluminal trafficking of neutrophils and inflammatory monocytes to common sites of extravasation, selectins assign different sites to these immune cells for their initial interactions with the microvascular endothelium. Whereas constitutively expressed leukocyte L-selectin/CD62L and endothelial P-selectin/CD62P together with CD44 and P-selectin glycoprotein ligand-1/CD162 initiate the emigration of neutrophils, de novo synthesis of endothelial E-selectin/CD62E launches the delayed secondary recruitment of inflammatory monocytes. In this context, P-selectin/CD62P and L-selectin/CD62L together with P-selectin glycoprotein ligand-1/CD162 and CD44 were found to regulate the flux of rolling neutrophils and inflammatory monocytes, whereas E-selectin/CD62E selectively adjusts the rolling velocity of inflammatory monocytes. Moreover, selectins and their interaction partners P-selectin glycoprotein ligand-1/CD162 and CD44 differentially control the intraluminal crawling behavior of neutrophils and inflammatory monocytes collectively enabling the sequential extravasation of these immune cells to inflamed tissue. CONCLUSIONS: Our findings provide novel insights into the mechanisms initiating the sequential infiltration of the perivascular tissue by neutrophils and monocytes in the acute inflammatory response and might thereby contribute to the development of targeted therapeutic strategies for prevention and treatment of cardiovascular diseases.


Asunto(s)
Células Endoteliales/metabolismo , Selectina L/metabolismo , Rodamiento de Leucocito , Monocitos/metabolismo , Neutrófilos/metabolismo , Selectina-P/metabolismo , Peritonitis/metabolismo , Migración Transendotelial y Transepitelial , Animales , Receptor 1 de Quimiocinas CX3C , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Hemodinámica , Receptores de Hialuranos/metabolismo , Mediadores de Inflamación/metabolismo , Ligandos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microcirculación , Microvasos/inmunología , Microvasos/metabolismo , Microvasos/fisiopatología , Monocitos/inmunología , Neutrófilos/inmunología , Peritonitis/genética , Peritonitis/inmunología , Peritonitis/fisiopatología , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Transducción de Señal , Factores de Tiempo
20.
Blood ; 122(5): 770-80, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23757732

RESUMEN

In vitro studies suggest that leukocytes locomote in an ameboid fashion independently of pericellular proteolysis. Whether this motility pattern applies for leukocyte migration in inflamed tissue is still unknown. In vivo microscopy on the inflamed mouse cremaster muscle revealed that blockade of serine proteases or of matrix metalloproteinases (MMPs) significantly reduces intravascular accumulation and transmigration of neutrophils. Using a novel in vivo chemotaxis assay, perivenular microinjection of inflammatory mediators induced directional interstitial migration of neutrophils. Blockade of actin polymerization, but not of actomyosin contraction abolished neutrophil interstitial locomotion. Multiphoton laser scanning in vivo microscopy showed that the density of the interstitial collagen network increases in inflamed tissue, thereby providing physical guidance to infiltrating neutrophils. Although neutrophils locomote through the interstitium without pericellular collagen degradation, inhibition of MMPs, but not of serine proteases, diminished their polarization and interstitial locomotion. In this context, blockade of MMPs was found to modulate expression of adhesion/signaling molecules on neutrophils. Collectively, our data indicate that serine proteases are critical for neutrophil extravasation, whereas these enzymes are dispensable for neutrophil extravascular locomotion. By contrast, neutrophil interstitial migration strictly relies on actin polymerization and does not require the pericellular degradation of collagen fibers but is modulated by MMPs.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Inflamación/inmunología , Metaloproteinasas de la Matriz/fisiología , Infiltración Neutrófila/fisiología , Aminocaproatos/farmacología , Animales , Aprotinina/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Enfermedades del Sistema Inmune/metabolismo , Enfermedades del Sistema Inmune/patología , Inflamación/metabolismo , Trastornos Leucocíticos/metabolismo , Trastornos Leucocíticos/patología , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/inmunología , Peritonitis/inmunología , Peritonitis/patología , Ácido Tranexámico/farmacología , Migración Transcelular de la Célula/efectos de los fármacos , Migración Transcelular de la Célula/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA