Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Radiol ; 31(3): 1420-1431, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32879987

RESUMEN

OBJECTIVES: The current study aimed to design an ultra-low-dose CT examination protocol using a deep learning approach suitable for clinical diagnosis of COVID-19 patients. METHODS: In this study, 800, 170, and 171 pairs of ultra-low-dose and full-dose CT images were used as input/output as training, test, and external validation set, respectively, to implement the full-dose prediction technique. A residual convolutional neural network was applied to generate full-dose from ultra-low-dose CT images. The quality of predicted CT images was assessed using root mean square error (RMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Scores ranging from 1 to 5 were assigned reflecting subjective assessment of image quality and related COVID-19 features, including ground glass opacities (GGO), crazy paving (CP), consolidation (CS), nodular infiltrates (NI), bronchovascular thickening (BVT), and pleural effusion (PE). RESULTS: The radiation dose in terms of CT dose index (CTDIvol) was reduced by up to 89%. The RMSE decreased from 0.16 ± 0.05 to 0.09 ± 0.02 and from 0.16 ± 0.06 to 0.08 ± 0.02 for the predicted compared with ultra-low-dose CT images in the test and external validation set, respectively. The overall scoring assigned by radiologists showed an acceptance rate of 4.72 ± 0.57 out of 5 for reference full-dose CT images, while ultra-low-dose CT images rated 2.78 ± 0.9. The predicted CT images using the deep learning algorithm achieved a score of 4.42 ± 0.8. CONCLUSIONS: The results demonstrated that the deep learning algorithm is capable of predicting standard full-dose CT images with acceptable quality for the clinical diagnosis of COVID-19 positive patients with substantial radiation dose reduction. KEY POINTS: • Ultra-low-dose CT imaging of COVID-19 patients would result in the loss of critical information about lesion types, which could potentially affect clinical diagnosis. • Deep learning-based prediction of full-dose from ultra-low-dose CT images for the diagnosis of COVID-19 could reduce the radiation dose by up to 89%. • Deep learning algorithms failed to recover the correct lesion structure/density for a number of patients considered outliers, and as such, further research and development is warranted to address these limitations.


Asunto(s)
COVID-19/diagnóstico por imagen , Aprendizaje Profundo , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Dosis de Radiación , Reproducibilidad de los Resultados , SARS-CoV-2 , Relación Señal-Ruido
2.
Endocrine ; 82(2): 326-334, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37291392

RESUMEN

OBJECTIVES: This study aims to use ultrasound derived features as biomarkers to assess the malignancy of thyroid nodules in patients who were candidates for FNA according to the ACR TI-RADS guidelines. METHODS: Two hundred and ten patients who met the selection criteria were enrolled in the study and subjected to ultrasound-guided FNA of thyroid nodules. Different radiomics features were extracted from sonographic images, including intensity, shape, and texture feature sets. Least Absolute Shrinkage and Selection Operator (LASSO), Minimum Redundancy Maximum Relevance (MRMR), and Random Forests/Extreme Gradient Boosting Machine (XGBoost) algorithms were used for feature selection and classification of the univariate and multivariate modeling, respectively. Evaluation of models performed using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). RESULTS: In the univariate analysis, Gray Level Run Length Matrix - Run-Length Non-Uniformity (GLRLM-RLNU) and gray-level zone length matrix - Run-Length Non-Uniformity (GLZLM-GLNU) (both with an AUC of 0.67) were top-performing for predicting nodules malignancy. In the multivariate analysis of the training dataset, the AUC of all combinations of feature selection algorithms and classifiers was 0.99, and the highest sensitivity was for XGBoost classifier and MRMR feature selection algorithms (0.99). Finally, the test dataset was used to evaluate our model in which XGBoost classifier with MRMR and LASSO feature selection algorithms had the highest performance (AUC = 0.95). CONCLUSIONS: Ultrasound-extracted features can be used as non-invasive biomarkers for thyroid nodules' malignancy prediction.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/patología , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/patología , Ultrasonografía/métodos , Aprendizaje Automático , Biomarcadores , Estudios Retrospectivos
3.
Med Phys ; 48(7): 3691-3701, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33894058

RESUMEN

OBJECTIVES: We evaluate the feasibility of treatment response prediction using MRI-based pre-, post-, and delta-radiomic features for locally advanced rectal cancer (LARC) patients treated by neoadjuvant chemoradiation therapy (nCRT). MATERIALS AND METHODS: This retrospective study included 53 LARC patients divided into a training set (Center#1, n = 36) and external validation set (Center#2, n = 17). T2-weighted (T2W) MRI was acquired for all patients, 2 weeks before and 4 weeks after nCRT. Ninety-six radiomic features, including intensity, morphological and second- and high-order texture features were extracted from segmented 3D volumes from T2W MRI. All features were harmonized using ComBat algorithm. Max-Relevance-Min-Redundancy (MRMR) algorithm was used as feature selector and k-nearest neighbors (KNN), Naïve Bayes (NB), Random forests (RF), and eXtreme Gradient Boosting (XGB) algorithms were used as classifiers. The evaluation was performed using the area under the receiver operator characteristic (ROC) curve (AUC), sensitivity, specificity and accuracy. RESULTS: In univariate analysis, the highest AUC in pre-, post-, and delta-radiomic features were 0.78, 0.70, and 0.71, for GLCM_IMC1, shape (surface area and volume) and GLSZM_GLNU features, respectively. In multivariate analysis, RF and KNN achieved the highest AUC (0.85 ± 0.04 and 0.81 ± 0.14, respectively) among pre- and post-treatment features. The highest AUC was achieved for the delta-radiomic-based RF model (0.96 ± 0.01) followed by NB (0.96 ± 0.04). Overall. Delta-radiomics model, outperformed both pre- and post-treatment features (P-value <0.05). CONCLUSION: Multivariate analysis of delta-radiomic T2W MRI features using machine learning algorithms could potentially be used for response prediction in LARC patients undergoing nCRT. We also observed that multivariate analysis of delta-radiomic features using RF classifiers can be used as powerful biomarkers for response prediction in LARC.


Asunto(s)
Neoplasias Colorrectales , Imagen por Resonancia Magnética , Algoritmos , Teorema de Bayes , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/terapia , Humanos , Aprendizaje Automático , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA