Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123965

RESUMEN

Porous conductive polymer structures, in particular Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) structures, are gaining in importance due to their versatile fields of application as sensors, hydrogels, or supercapacitors, to name just a few. Moreover, (porous) conducting polymers have become of interest for wearable and smart textile applications due to their biocompatibility, which enables applications with direct skin contact. Therefore, there is a huge need to investigate distinct, straightforward, and textile-compatible production methods for the fabrication of porous PEDOT:PSS structures. Here, we present novel and uncomplicated approaches to producing diverse porous PEDOT:PSS structures and characterize them thoroughly in terms of porosity, electrical resistance, and their overall appearance. Production methods comprise the incorporation of micro cellulose, the usage of a blowing agent, creating a sponge-like structure, and spraying onto a porous base substrate. This results in the fabrication of various porous structures, ranging from thin and slightly porous to thick and highly porous. Depending on the application, these structures can be modified and integrated into electronic components or wearables to serve as porous electrodes, sensors, or other functional devices.

2.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631613

RESUMEN

A person's body temperature is an important indicator of their health status. A deviation of that temperature by just 2 °C already has or can lead to serious consequences, such as fever or hypothermia. Hence, the development of a temperature-sensing and heatable yarn is an important step toward enabling and improving the monitoring and regulation of a person's body temperature. This technology offers benefits to several industries, such as health care and sports. This paper focuses on the characterization and development of a hybrid yarn, which can measure and visualize temperature changes through a thermoresistive and thermochromic effect. Moreover, the yarn is able to serve as a flexible heating element by connecting to a power source. The structure of the yarn is designed in three layers. Each layer and component ensures the functionality and flexibility of the yarn and additional compatibility with further processing steps. A flexible stainless steel core was used as the heat-sensitive and heat-conducting material. The layer of polyester wrapped around the stainless steel yarn improves the wearing comfort and serves as substrate material for the thermochromic coating. The resulting hybrid yarn has a reproducible sensory function and changes its resistance by 0.15 Ω between 20 and 60 °C for a length of 30 cm. In addition, the yarn has a uniform and reproducible heating power, so that temperature steps can be achieved at a defined length by selecting certain voltages. The thermochromic color change is clearly visible between 28 and 29 °C. Due to its textile structure, the hybrid sensory and actuating yarn can easily be incorporated into a woven fabric or into a textile by means of joining technology sewing.

3.
Sensors (Basel) ; 20(19)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036136

RESUMEN

Electrochromic devices can act as passive displays. They change their color when a low voltage is applied. Flexible and bendable hybrid textile-film electrochromic devices with poly-3,4-ethylenedioxythiophene polystyrene sulfonate (PEDOT:PSS) were prepared on polyethylene polyethylene terephthalate (PEPES) membranes using a spray coating technique. The electrolyte consisted of a gelatin glycerol mixture as host matrix and calcium chloride. Titanium dioxide was used as an ion storage layer and a carbon containing dispersion was used for the counter electrode on a polyester rip-stop fabric. The sheet resistance of PEDOT:PSS on PEPES was 500 Ohm/sq. A 5 × 5 electrochromic matrix with individually addressable pixels was successfully designed and assembled. The switching time of the pixels was 2 s at a voltage of 2.0 V directly after assembling. The use of titanium dioxide as ion storage also increased the contrast of the dark-blue reduced electrochromic layer. Coloration was not self-sustaining. The PEDOT:PSS layer needed a constant low voltage of at least 0.5 V to sustain in the dark-blue reduced state. The switching time increased with time. After 12 months the switching time was ~4 s at a voltage of 2.8 V. The addition of glycerol into the electrolyte extended the lifetime of a non-encapsulated textile electrochromic cell, because moisture is retained in the electrolyte. Charge carriers can be transported into and out of the electrochromic layer.

4.
Micromachines (Basel) ; 13(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36422410

RESUMEN

The need for more efficient health services and the trend of a healthy lifestyle pushes the development of smart textiles. Since textiles have always been an object of everyday life, smart textiles promise an extensive user acceptance. Thereby, the manufacture of electrical components based on textile materials is of great interest for applications as biosensors. Organic electrochemical transistors (OECTs) are often used as biosensors for the detection of saline content, adrenaline, glucose, etc., in diverse body fluids. Textile-based OECTs are mostly prepared by combining a liquid electrolyte solution with two separate electro-active yarns that must be precisely arranged in a textile structure. Herein, on the other hand, a biosensor based on a textile single-component organic electrochemical transistor with a hardened electrolyte was developed by common textile technologies such as impregnation and laminating. Its working principle was demonstrated by showing that the herein-produced transistor functions similarly to a switch or an amplifier and that it is able to detect ionic analytes of a saline solution. These findings support the idea of using this new device layout of textile-based OECTs as biosensors in near-body applications, though future work must be carried out to ensure reproducibility and selectivity, and to achieve an increased level of textile integration.

5.
Polymers (Basel) ; 14(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35808570

RESUMEN

Flexible and stretchable strain sensors are an important development for measuring various movements and forces and are increasingly used in a wide range of smart textiles. For example, strain sensors can be used to measure the movements of arms, legs or individual joints. Thereby, most strain sensors are capable of detecting large movements with a high sensitivity. Very few are able to measure small movements, i.e., strains of less than 5%, with a high sensitivity, which is necessary to carry out important health measurements, such as breathing, bending, heartbeat, and vibrations. This research deals with the development of strain sensors capable of detecting strain of 1% with a high sensitivity. For this purpose, a total of six commercially available metallic yarns were coated with a carbon-containing silicone coating. The process is based on a vertical dip-coating technology with a self-printed 3D coating bath. Afterwards, the finished yarns were interlooped and stretched by 1% while electrical resistance measurements were carried out. It was shown that, although the coating reduced the overall conductivity of the yarns, it also improved their sensitivity to stress. Conclusively, highly sensitive strain sensors, designed specially for small loads, were produced by a simple coating set-up and interlooping structure of the sensory yarns, which could easily be embedded in greater textile structures for wearable electronics.

6.
Polymers (Basel) ; 14(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215719

RESUMEN

Smart textiles have properties that outperform the conventional protective and decorative function of textiles. By integrating special sensors into clothing, body functions and movements can be detected. Piezoresistive sensors measure a change in electrical resistance due to the application of force in the form of stretching, pressure or bending. In order to manufacture such sensors, conventional non-conductive textile materials need to be made conductive by finishing processes. Therefore, a non-conductive silicone monofilament was coated with a conductive carbon silicone and additional silver-containing components and investigated for its suitability as a strain sensor. The changes in electrical resistance and the gauge factor as a measure of the sensitivity of a sensor were measured and calculated. In this publication, the electrical properties of such a filament-based sensor in the context of particle composition and concentration are discussed. The electrical resistance was already significantly reduced in a first step by coating with conductive carbon silicone (145 kΩ). The addition of silver-containing components further reduced the electrical resistance in a second step. Thereby, flat flakes of silver proved to be much more effective than silver-containing particles (5 kΩ at 20% addition). The former was easier to integrate into the coating and formed contact surfaces with each other at higher concentrations. Stretching the samples increased the resistance by enlarging the distance between the conductive components. With 30% silver-coated glass flakes in the coating, the highest gauge factor of 0.33 was achieved. Consequently, the changes in electrical resistance during stretching can be exploited to detect motion and the gauge factor indicates that even small changes in strain can be detected, so the herein developed coated monofilaments are suggested for use as strain sensors. Future work includes matching the particle composition and concentration to the exact application and investigating the sensors in the field.

7.
Materials (Basel) ; 14(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069895

RESUMEN

Embroidery is often the preferred technology when rigid circuit boards need to be connected to sensors and electrodes by data transmission lines and integrated into textiles. Moreover, conventional circuit boards, like Lilypad Arduino, commonly lack softness and flexibility. One approach to overcome this drawback can be flexible sequins as a substrate carrier for circuit boards. In this paper, such an approach of the development of flexible and functional sequins and circuit boards for wearable textile applications using subtractive and additive technology is demonstrated. Applying these techniques, one-sided sequins and circuit boards are produced using wax printing and etching copper-clad foils, as well as using dual 3D printing of conventional isolating and electrically conductive materials. The resulting flexible and functional sequins are equipped with surface mounted devices, applied to textiles by an automated embroidery process and contacted with a conductive embroidery thread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA