Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 17(1): 170, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774286

RESUMEN

BACKGROUND: In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. RESULTS: We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. CONCLUSION: Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Regiones Operadoras Genéticas , Factor de Transcripción de AraC/genética , Arabinosa/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Operón , Regiones Promotoras Genéticas , Proteína Fluorescente Roja
2.
Nucleic Acids Res ; 43(4): 2282-92, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25670677

RESUMEN

Curved DNA binding protein A (CbpA) is a co-chaperone and nucleoid associated DNA binding protein conserved in most γ-proteobacteria. Best studied in Escherichia coli, CbpA accumulates to >2500 copies per cell during periods of starvation and forms aggregates with DNA. However, the molecular basis for DNA binding is unknown; CbpA lacks motifs found in other bacterial DNA binding proteins. Here, we have used a combination of genetics and biochemistry to elucidate the mechanism of DNA recognition by CbpA. We show that CbpA interacts with the DNA minor groove. This interaction requires a highly conserved arginine side chain. Substitution of this residue, R116, with alanine, specifically disrupts DNA binding by CbpA, and its homologues from other bacteria, whilst not affecting other CbpA activities. The intracellular distribution of CbpA alters dramatically when DNA binding is negated. Hence, we provide a direct link between DNA binding and the behaviour of CbpA in cells.


Asunto(s)
Arginina/química , Proteínas Portadoras/química , Proteínas de Unión al ADN/química , ADN/metabolismo , Proteínas de Escherichia coli/química , Sustitución de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína
3.
Nucleic Acids Res ; 42(18): 11383-92, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209233

RESUMEN

In eukaryotes, the location of a gene on the chromosome is known to affect its expression, but such position effects are poorly understood in bacteria. Here, using Escherichia coli K-12, we demonstrate that expression of a reporter gene cassette, comprised of the model E. coli lac promoter driving expression of gfp, varies by ∼300-fold depending on its precise position on the chromosome. At some positions, expression was more than 3-fold higher than at the natural lac promoter locus, whereas at several other locations, the reporter cassette was completely silenced: effectively overriding local lac promoter control. These effects were not due to differences in gene copy number, caused by partially replicated genomes. Rather, the differences in gene expression occur predominantly at the level of transcription and are mediated by several different features that are involved in chromosome organization. Taken together, our findings identify a tier of gene regulation above local promoter control and highlight the importance of chromosome position effects on gene expression profiles in bacteria.


Asunto(s)
Posicionamiento de Cromosoma , Escherichia coli K12/genética , Regulación Bacteriana de la Expresión Génica , Girasa de ADN/metabolismo , Escherichia coli K12/enzimología , Escherichia coli K12/metabolismo , Dosificación de Gen , Regiones Promotoras Genéticas , Transcripción Genética
4.
Nat Commun ; 8(1): 1444, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29133912

RESUMEN

The multiple antibiotic resistance (mar) operon of Escherichia coli is a paradigm for chromosomally encoded antibiotic resistance in enteric bacteria. The locus is recognised for its ability to modulate efflux pump and porin expression via two encoded transcription factors, MarR and MarA. Here we map binding of these regulators across the E. coli genome and identify an extensive mar regulon. Most notably, MarA activates expression of genes required for DNA repair and lipid trafficking. Consequently, the mar locus reduces quinolone-induced DNA damage and the ability of tetracyclines to traverse the outer membrane. These previously unrecognised mar pathways reside within a core regulon, shared by most enteric bacteria. Hence, we provide a framework for understanding multidrug resistance, mediated by analogous systems, across the Enterobacteriaceae. Transcription factors MarR and MarA confer multidrug resistance in enteric bacteria by modulating efflux pump and porin expression. Here, Sharma et al. show that MarA also upregulates genes required for lipid trafficking and DNA repair, thus reducing antibiotic entry and quinolone-induced DNA damage.


Asunto(s)
Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Metabolismo de los Lípidos/genética , Porinas/biosíntesis , Proteínas Represoras/genética , Antibacterianos/farmacología , Transporte Biológico/genética , Ciprofloxacina/farmacología , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Porinas/genética , Proteínas Represoras/metabolismo , Tetraciclinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA