Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cytokine ; 98: 33-41, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28277287

RESUMEN

The Janus kinases (JAK) are a family of kinases that play an essential role in cytokine signaling and are implicated in the pathogenesis of autoimmune diseases and hematological malignancies. As a result, the JAKs have become attractive therapeutic targets. The discovery of a JAK2 point mutation (JAK2 V617F) as the main cause of polycythemia vera lead to the development and FDA approval of a JAK1/2 inhibitor, ruxolitinib, in 2011. This review focuses on the various JAK and associated components aberrations implicated in myeloproliferative neoplasms, leukemias, and lymphomas. In addition to ruxolitinib, other JAK inhibitors are currently being evaluated in clinical trials for treating hematological malignancies. The use of JAK inhibitors alone or in combination therapy should be considered as a way to deliver targeted therapy to patients.


Asunto(s)
Neoplasias Hematológicas/tratamiento farmacológico , Inhibidores de las Cinasas Janus/uso terapéutico , Quinasas Janus/antagonistas & inhibidores , Animales , Ensayos Clínicos como Asunto , Quimioterapia Combinada , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Inhibidores de las Cinasas Janus/administración & dosificación , Quinasas Janus/metabolismo , Leucemia/tratamiento farmacológico , Ratones , Terapia Molecular Dirigida/métodos , Trastornos Mieloproliferativos/tratamiento farmacológico , Nitrilos , Policitemia Vera/tratamiento farmacológico , Medicina de Precisión , Pirazoles/uso terapéutico , Pirimidinas , Transducción de Señal
2.
Mol Genet Metab ; 106(2): 160-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22503289

RESUMEN

All knockout mouse models of urea cycle disorders die in the neonatal period or shortly thereafter. Since N-acetylglutamate synthase (NAGS) deficiency in humans can be effectively treated with N-carbamyl-l-glutamate (NCG), we sought to develop a mouse model of this disorder that could be rescued by biochemical intervention, reared to adulthood, reproduce, and become a novel animal model for hyperammonemia. Founder NAGS knockout heterozygous mice were obtained from the trans-NIH Knock-Out Mouse Project. Genotyping of the mice was performed by PCR and confirmed by Western blotting of liver and intestine. NCG and L-citrulline (Cit) were used to rescue the NAGS knockout homozygous (Nags(-/-)) pups and the rescued animals were characterized. We observed an 85% survival rate of Nags(-/-) mice when they were given intraperitoneal injections with NCG and Cit during the newborn period until weaning and supplemented subsequently with both compounds in their drinking water. This regimen has allowed for normal development, apparent health, and reproduction. Interruption of this rescue intervention resulted in the development of severe hyperammonemia and death within 48 h. In addition to hyperammonemia, interruption of rescue supplementation was associated with elevated plasma glutamine, glutamate, and lysine, and reduced citrulline, arginine, ornithine and proline levels. We conclude that NAGS deprived mouse model has been developed which can be rescued by NCG and Cit and reared to reproduction and beyond. This biochemically salvageable mouse model recapitulates the clinical phenotype of proximal urea cycle disorders and can be used as a reliable model of induced hyperammonemia by manipulating the administration of the rescue compounds.


Asunto(s)
N-Acetiltransferasa de Aminoácidos/deficiencia , Modelos Animales de Enfermedad , Hiperamonemia/enzimología , Ratones , N-Acetiltransferasa de Aminoácidos/genética , N-Acetiltransferasa de Aminoácidos/metabolismo , Animales , Cruzamiento , Femenino , Orden Génico , Marcación de Gen , Genotipo , Glutamatos/uso terapéutico , Humanos , Hiperamonemia/tratamiento farmacológico , Hiperamonemia/genética , Hiperamonemia/mortalidad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
3.
J Immunol ; 185(2): 1037-44, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20554958

RESUMEN

Activation of a naive T cell is a highly energetic event, which requires a substantial increase in nutrient metabolism. Upon stimulation, T cells increase in size, rapidly proliferate, and differentiate, all of which lead to a high demand for energetic and biosynthetic precursors. Although amino acids are the basic building blocks of protein biosynthesis and contribute to many other metabolic processes, the role of amino acid metabolism in T cell activation has not been well characterized. We have found that glutamine in particular is required for T cell function. Depletion of glutamine blocks proliferation and cytokine production, and this cannot be rescued by supplying biosynthetic precursors of glutamine. Correlating with the absolute requirement for glutamine, T cell activation induces a large increase in glutamine import, but not glutamate import, and this increase is CD28-dependent. Activation coordinately enhances expression of glutamine transporters and activities of enzymes required to allow the use of glutamine as a Krebs cycle substrate in T cells. The induction of glutamine uptake and metabolism requires ERK function, providing a link to TCR signaling. Together, these data indicate that regulation of glutamine use is an important component of T cell activation. Thus, a better understanding of glutamine sensing and use in T cells may reveal novel targets for immunomodulation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glutamina/metabolismo , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Alanina Transaminasa/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Transporte Biológico/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/genética , Flavonoides/farmacología , Citometría de Flujo , Glutamato Deshidrogenasa/metabolismo , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/farmacocinética , Glutamina/farmacología , Ácidos Cetoglutáricos/metabolismo , Activación de Linfocitos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/citología , Linfocitos T/metabolismo
4.
Leukemia ; 34(1): 35-49, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31439943

RESUMEN

Pediatric T cell acute lymphoblastic leukemia (T-ALL) cells frequently contain mutations in the interleukin-7 (IL-7) receptor pathway or respond to IL-7 itself. To target the IL-7 receptor on T-ALL cells, murine monoclonal antibodies (MAbs) were developed against the human IL-7Rα chain and chimerized with human IgG1 constant regions. Crystal structures demonstrate that the two MAbs bound different IL-7Rα epitopes. The MAbs mediated antibody-dependent cell-mediated cytotoxicity (ADCC) against patient-derived xenograft (PDX) T-ALL cells, which was improved by combining two MAbs. In vivo, the MAbs showed therapeutic efficacy via ADCC-dependent and independent mechanisms in minimal residual and established disease. PDX T-ALL cells that relapsed following a course of chemotherapy displayed elevated IL-7Rα, and MAb treatment is effective against relapsing disease, suggesting the use of anti-IL7Rα MAbs in relapsed T-ALL patients or patients that do not respond to chemotherapy.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Interleucina-7/antagonistas & inhibidores , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Oncotarget ; 9(32): 22605-22617, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29854301

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current chemotherapy is quite toxic in growing children and more directed therapeutics are being sought. The IL-7R pathway is a major driver of ALL and here we evaluate two drugs directed to that pathway using a model of T cell ALL. Mutant gain-of-function IL-7Rα was transduced into an IL-7-dependent murine thymocyte line conferring ligand-independent survival and growth. JAK1 is associated with IL-7Rα and mediates signaling from the mutant receptor. In vitro, treating the transformed cell line with the JAK1/2 inhibitor ruxolitinib inhibited ligand-independent signaling and induced cell death. Transfer of the transformed cell line into mice resulted in aggressive leukemia and untreated mice succumbed in about three weeks. Treatment with ruxolitinib incorporated into chow showed a potent therapeutic benefit with reduction in leukemic burden and extension of survival. BCL-2 is an anti-apoptotic downstream mediator of the IL-7R survival mechanism. Venetoclax, an inhibitor of BCL-2, showed activity against the transformed cell line in vitro and could be combined with ruxolitinib in vivo. These findings support the therapeutic potential of treating T-ALL by targeting the IL-7R pathway.

6.
Inflamm Bowel Dis ; 23(11): 1983-1995, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29019857

RESUMEN

BACKGROUND: If treatment with intravenous steroids fail, inflammatory bowel disease patients with acute severe colitis face systemic anti-tumor necrosis factor biologic rescue therapy or colectomy. Interleukin (IL)-27 is a cytokine with an immunosuppressive role in adaptive immune responses. However, the IL-27 receptor complex is also expressed on innate immune cells, and there is evidence that IL-27 can impact the function of innate cell subsets, although this particular functionality in vivo is not understood. Our aim was to define the efficacy of IL-27 in acute severe colitis and characterize novel IL-27-driven mechanisms of immunosuppression in the colonic mucosa. METHODS: We assessed oral delivery of Lactococcus lactis expressing an IL-27 hyperkine on the innate immune response in vivo in a genetically intact, noninfective, acute murine colitis model induced by intrarectal instillation of 2,4,6-trinitrobenzenesulfonic acid in SJL/J mice. RESULTS: IL-27 attenuates acute severe colitis through the reduction of colonic mucosal neutrophil infiltrate associated with a decreased CXC chemokine gradient. This suppression was T cell independent and IL-10 dependent, initially featuring enhanced mucosal IL-10. IL-27 was associated with a reduction in colonic proinflammatory cytokines and induced a multifocal, strong, positive nuclear expression of phosphorylated STAT-1 in mucosal epithelial cells. CONCLUSION: We have defined novel mechanisms of IL-27 immunosuppression toward colonic innate immune responses in vivo. Mucosal delivery of IL-27 has translational potential as a novel therapeutic for inflammatory bowel disease, and it is a future mucosal directed rescue therapy in acute severe inflammatory bowel disease.


Asunto(s)
Colitis/tratamiento farmacológico , Colon/inmunología , Inmunidad Innata , Interleucina-10/metabolismo , Interleucina-27/farmacología , Mucosa Intestinal/metabolismo , Enfermedad Aguda , Animales , Colitis/inducido químicamente , Colon/fisiopatología , Modelos Animales de Enfermedad , Inflamación/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Interleucina-27/inmunología , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Linfocitos T/metabolismo , Ácido Trinitrobencenosulfónico/administración & dosificación
8.
J Microbiol Biol Educ ; 12(2): 157-65, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-23653760

RESUMEN

Here we describe a semester-long, multipart activity called "Read and wRite to reveal the Research process" (R(3)) that was designed to teach students the elements of a scientific research paper. We implemented R(3) in an advanced immunology course. In R(3), we paralleled the activities of reading, discussion, and presentation of relevant immunology work from primary research papers with student writing, discussion, and presentation of their own lab findings. We used reading, discussing, and writing activities to introduce students to the rationale for basic components of a scientific research paper, the method of composing a scientific paper, and the applications of course content to scientific research. As a final part of R(3), students worked collaboratively to construct a Group Research Paper that reported on a hypothesis-driven research project, followed by a peer review activity that mimicked the last stage of the scientific publishing process. Assessment of student learning revealed a statistically significant gain in student performance on writing in the style of a research paper from the start of the semester to the end of the semester.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA