Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Med Sci ; 20(11): 1448-1459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790849

RESUMEN

TJP1, an adaptor protein of the adhesive barrier, has been found to exhibit distinct oncogenic or tumor suppressor functions in a cell-type dependent manner. However, the role of TJP1 in kidney renal clear cell carcinoma (KIRC) remains to be explored. The results showed a marked down-regulation of TJP1 in KIRC tissues compared to normal tissues. Low expression of TJP1 was significantly associated with high grade and poor prognosis in KIRC. Autophagosome aggregation and LC3 II conversion demonstrated that TJP1 may induce autophagy signaling in 786-O and OS-RC-2 cells. Knockdown of TJP1 led to a decrease in the expression of autophagy-related genes, such as BECN1, ATG3, and ATG7. Consistently, TJP1 expression showed a significant positive correlation with these autophagy-related genes in KIRC patients. Furthermore, the overall survival analysis of KIRC patients based on the expression of autophagy-related genes revealed that most of these genes were associated with a good prognosis. TJP1 overexpression significantly suppressed cell proliferation and tumor growth in 786-O cells, whereas the addition of an autophagy inhibitor diminished its inhibitory function. Taken together, these results suggest that TJP1 serves as a favorable prognostic marker and induces autophagy to suppress cell proliferation and tumor growth in KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Proteína de la Zonula Occludens-1 , Autofagia/genética , Carcinoma de Células Renales/genética , Proliferación Celular/genética , Neoplasias Renales/genética , Riñón , Pronóstico
2.
J Cell Mol Med ; 25(18): 8836-8849, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34378321

RESUMEN

Colorectal cancer (CRC) is the third most malignant tumour worldwide, with high mortality and recurrence. Chemoresistance is one of the main factors leading to metastasis and poor prognosis in advanced CRC patients. By analysing the Gene Expression Omnibus data set, we found higher hexokinase 2 (HK2) expression levels in patients with metastatic CRC than in those with primary CRC. Moreover, we observed higher enrichment in oxaliplatin resistance-related gene sets in metastatic CRC than in primary CRC. However, the underlying relationship has not yet been elucidated. In our study, HK2 expression was significantly elevated in CRC patients. Gene set enrichment analysis (GSEA) revealed multi-drug resistance and epithelial-mesenchymal transition (EMT) pathways related to high HK2 expression. Our results showed that knockdown of HK2 significantly inhibited vimentin and Twist1 expression and promoted TJP1 and E-cadherin expression in CRC cells. Additionally, transcriptional and enzymatic inhibition of HK2 by 3-bromopyruvate (3-bp) impaired oxaliplatin resistance in vitro and in vivo. Mechanistically, HK2 interacts with and stabilized Twist1 by preventing its ubiquitin-mediated degradation, which is related to oxaliplatin resistance, in CRC cells. Overexpression of Twist1 reduced the apoptosis rate by HK2 knockdown in CRC cells. Collectively, we discovered that HK2 is a crucial regulator that mediates oxaliplatin resistance through Twist1. These findings identify HK2 and Twist1 as promising drug targets for CRC chemoresistance.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Hexoquinasa/metabolismo , Proteínas Nucleares/metabolismo , Oxaliplatino/farmacología , Proteína 1 Relacionada con Twist/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB C
3.
Oncogene ; 41(4): 502-514, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34782718

RESUMEN

Bladder cancer (BLCA) is the most common malignant tumor of the urinary system and is characterized by high metastatic rates and poor prognosis. The expression of tight junction protein 1 (TJP1) is associated with bladder cancer invasion; however, the mechanism by which TJP1 affects vasculature remodeling remains unknown. In this study, we found that TJP1 expression correlated with tumor angiogenesis and poor overall survival in clinical samples. Furthermore, TJP1 overexpression promoted tumor angiogenesis in BLCA cells and stimulated recruitment of macrophages to tumors by upregulating CCL2 expression. Mechanistically, TJP1 interacted with TWIST1 and enhanced the transcriptional activity of CCL2. The impairment of tumor angiogenesis caused by knockdown of TJP1 was dramatically rescued by overexpression of TWIST1. Furthermore, TJP1 recruited USP2, which deubiquitinated TWIST1, thereby protecting TWIST1 from proteasome-mediated protein degradation. In conclusion, our results suggest that TJP1 controls angiogenesis in BLCA via TWIST1-dependent regulation of CCL2. We demonstrate that TJP1 functions as a scaffold for the interaction between USP2 and TWIST1 and this may provide potential therapeutic targets in bladder cancer.


Asunto(s)
Ubiquitina Tiolesterasa/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Proteína de la Zonula Occludens-1/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Desnudos , Transfección , Neoplasias de la Vejiga Urinaria/patología
4.
Mol Ther Oncolytics ; 19: 197-207, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33251332

RESUMEN

The molecular alterations that initiate the development of multiple myeloma (MM) are not fully understood. Our results revealed that TJP1 was downregulated in MM and positively related to the overall survival of MM patients in The Cancer Genome Atlas (TCGA) database and patient samples. In parallel, cell adhesion capacity representing MM metastasis was decreased in MM patients compared with healthy samples, together with the significantly activated epithelial-to-mesenchymal transition (EMT) transcriptional-like patterns of MM cells. Further analyses demonstrated that TJP1 negatively regulated EMT and consequently positively regulated cell adhesion in MM from TCGA database and MM1s cells. Furthermore, the methylation level of each CpG site on the TJP1 promoter was negatively correlated with TJP1 expression levels. Quantitative real-time PCR and western blot assays demonstrated that methylase DNMT1 regulated the methylation of TJP1. Finally, treatment with a combination of the MM clinical medicine bortezomib, methylation inhibitor, or TJP1 overexpression significantly suppressed the viability and progression of tumor cells of MM orthotopic models. In summary, our results indicate that DNMT1 promotes the methylation of TJP1 promoter, thereby decreasing its expression and regulating the development of EMT-inhibited MM cell adhesion. Therefore, methylation of TJP1 is a potential therapeutic agent to prevent the progression of MM disease.

5.
Oncogene ; 39(37): 5964-5978, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32753650

RESUMEN

Oligodendroglioma is an important type of lower-grade glioma (LGG), which is a slowly progressing brain tumor. Many LGGs eventually transform into a more aggressive or malignant type. Enhanced angiogenesis is a characteristic of malignantly transformed oligodendroglioma (m-oligodendroglioma). However, the pathogenesis and signaling pathways associated with angiogenesis and proliferation in m-oligodendroglioma are not well understood. In this study, we identified that Insulin Gene Enhancer Protein (ISL2) and its angiogenic capacity were inversely related to survival according to LGG patient data from an online database, and this was further confirmed with pathological LGG patient samples, including malignantly transformed samples, by detecting the expression of ISL2, the angiogenic markers vascular endothelial growth factor (VEGFA) and CD31 and the proliferation marker Ki-67. We then established novel oligodendroglioma patient tumor-derived orthotopic xenograft mouse models and cell lines to verify the role of ISL2 in regulating angiogenesis to promote oligodendroglioma growth and malignant transformation. Furthermore, ISL2 regulated ANGPT2 transcription by binding to the ANGPT2 promoter. Then, ANGPT2, a downstream gene, activated angiogenesis through VEGFA to promote oligodendroglioma malignant transformation. Finally, combining AAV-ISL2-shRNA with temozolomide suppressed oligodendroglioma progression more effectively than either monotherapy in vivo and in vitro. Thus, hypoxia-induced ISL2 regulated ANGPT2, which subsequently induced angiogenesis to promote oligodendroglioma growth and malignant transformation. Malignancy was accompanied by worsened hypoxia inside the tumor mass, creating a positive feedback loop. In conclusion, this study suggests that ISL2 is a biomarker for oligodendroglioma progression and that anti-ISL2 therapy may offer a potential clinical strategy for treating m-oligodendroglioma.


Asunto(s)
Angiopoyetina 2/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas con Homeodominio LIM/metabolismo , Neovascularización Patológica/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglioma/genética , Oligodendroglioma/metabolismo , Factores de Transcripción/metabolismo , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Proteínas con Homeodominio LIM/genética , Ratones , Neovascularización Patológica/metabolismo , Proteínas del Tejido Nervioso/genética , Oligodendroglioma/mortalidad , Oligodendroglioma/patología , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA