Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 34(5): e2982, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831569

RESUMEN

Spatially explicit prioritization of invasive species control is a complex issue, requiring consideration of trade-offs between immediate and future benefits. This study aimed to prioritize management efforts to account for current and future threats from widespread invasions and examine the strength of the trade-off between these different management goals. As a case study, we identified spatially explicit management priorities for the widespread invasion of introduced willow into riparian and wetland habitats across a 102,145-km2 region in eastern Australia. In addition to targeting places where willow threatens biodiversity now, a second set of management goals was to limit reinfestation and further spread that could occur via two different mechanisms (downstream and by wind). A model of likely willow distribution across the region was combined with spatial data for biodiversity (native vegetation, threatened species and communities), ecological conditions, management costs, and two potential dispersal layers. We used systematic conservation planning software (Zonation) to prioritize where willow management should be focussed across more than 100,000 catchments for a range of different scenarios that reflected different weights between management goals. For willow invasion, we found that we could prioritize willow management to reduce the future threat of dispersal downstream with little reduction in the protection of biodiversity. However, accounting for future threats from wind dispersal resulted in a stronger trade-off with protection of threatened biodiversity. The strongest trade-off was observed when both dispersal mechanisms were considered together. This study shows that considering current and future goals together offers the potential to substantially improve conservation outcomes for invasive species management. Our approach also informs land managers about the relative trade-offs among different management goals under different control scenarios, helping to make management decisions more transparent. This approach can be used for other widespread invasive species to help improve invasive species management decisions.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Conservación de los Recursos Naturales/métodos , Modelos Biológicos , Salix , Biodiversidad
2.
Science ; 381(6658): 616-619, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561857

RESUMEN

Australia rethinks strategies after 2019 to 2020 bushfires.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37030767

RESUMEN

Wildfires affect many regions across the world. The accelerated progression of global warming has amplified their frequency and scale, deepening their impact on human life, the economy, and the environment. The temperature rise has been driving wildfires to behave unpredictably compared to those previously observed, challenging researchers and fire management agencies to understand the factors behind this behavioral change. Furthermore, this change has rendered fire personnel training outdated and lost its ability to adequately prepare personnel to respond to these new fires. Immersive visualization can play a key role in tackling the growing issue of wildfires. Therefore, this survey reviews various studies that use immersive and non-immersive data visualization techniques to depict wildfire behavior and train first responders and planners. This paper identifies the most useful characteristics of these systems. While these studies support knowledge creation for certain situations, there is still scope to comprehensively improve immersive systems to address the unforeseen dynamics of wildfires.

4.
PLoS One ; 16(1): e0245132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411769

RESUMEN

Spotting is thought to increase wildfire rate of spread (ROS) and in some cases become the main mechanism for spread. The role of spotting in wildfire spread is controlled by many factors including fire intensity, number of and distance between spot fires, weather, fuel characteristics and topography. Through a set of 30 laboratory fire experiments on a 3 m x 4 m fuel bed, subject to air flow, we explored the influence of manually ignited spot fires (0, 1 or 2), the presence or absence of a model hill and their interaction on combined fire ROS (i.e. ROS incorporating main fire and merged spot fires). During experiments conducted on a flat fuel bed, spot fires (whether 1 or 2) had only a small influence on combined ROS. Slowest combined ROS was recorded when a hill was present and no spot fires were ignited, because the fires crept very slowly downslope and downwind of the hill. This was up to, depending on measurement interval, 5 times slower than ROS in the flat fuel bed experiments. However, ignition of 1 or 2 spot fires (with hill present) greatly increased combined ROS to similar levels as those recorded in the flat fuel bed experiments (depending on spread interval). The effect was strongest on the head fire, where spot fires merged directly with the main fire, but significant increases in off-centre ROS were also detected. Our findings suggest that under certain topographic conditions, spot fires can allow a fire to overcome the low spread potential of downslopes. Current models may underestimate wildfire ROS and fire arrival time in hilly terrain if the influence of spot fires on ROS is not incorporated into predictions.


Asunto(s)
Modelos Teóricos , Tiempo (Meteorología) , Incendios Forestales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA