Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294366

RESUMEN

Quantitative microscopy workflows have evolved dramatically over the past years, progressively becoming more complex with the emergence of deep learning. Long-standing challenges such as three-dimensional segmentation of complex microscopy data can finally be addressed, and new imaging modalities are breaking records in both resolution and acquisition speed, generating gigabytes if not terabytes of data per day. With this shift in bioimage workflows comes an increasing need for efficient orchestration and data management, necessitating multitool interoperability and the ability to span dedicated computing resources. However, existing solutions are still limited in their flexibility and scalability and are usually restricted to offline analysis. Here we introduce Arkitekt, an open-source middleman between users and bioimage apps that enables complex quantitative microscopy workflows in real time. It allows the orchestration of popular bioimage software locally or remotely in a reliable and efficient manner. It includes visualization and analysis modules, but also mechanisms to execute source code and pilot acquisition software, making 'smart microscopy' a reality.

2.
EMBO J ; 41(19): e111265, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36004506

RESUMEN

Accumulation of aggregates of the microtubule-binding protein Tau is a pathological hallmark of Alzheimer's disease. While Tau is thought to primarily associate with microtubules, it also interacts with and localizes to the plasma membrane. However, little is known about how Tau behaves and organizes at the plasma membrane of live cells. Using quantitative, single-molecule imaging, we show that Tau exhibits spatial and kinetic heterogeneity near the plasma membrane of live cells, resulting in the formation of nanometer-sized hot spots. The hot spots lasted tens of seconds, much longer than the short dwell time (∼ 40 ms) of Tau on microtubules. Pharmacological and biochemical disruption of Tau/microtubule interactions did not prevent hot spot formation, suggesting that these are different from the reported Tau condensation on microtubules. Although cholesterol removal has been shown to reduce Tau pathology, its acute depletion did not affect Tau hot spot dynamics. Our study identifies an intrinsic dynamic property of Tau near the plasma membrane that may facilitate the formation of assembly sites for Tau to assume its physiological and pathological functions.


Asunto(s)
Microtúbulos , Imagen Individual de Molécula , Membrana Celular/metabolismo , Cinética , Microtúbulos/metabolismo , Proteínas tau/metabolismo
3.
Nat Methods ; 20(2): 259-267, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36765136

RESUMEN

Single-molecule localization microscopy (SMLM) generates data in the form of coordinates of localized fluorophores. Cluster analysis is an attractive route for extracting biologically meaningful information from such data and has been widely applied. Despite a range of cluster analysis algorithms, there exists no consensus framework for the evaluation of their performance. Here, we use a systematic approach based on two metrics to score the success of clustering algorithms in simulated conditions mimicking experimental data. We demonstrate the framework using seven diverse analysis algorithms: DBSCAN, ToMATo, KDE, FOCAL, CAML, ClusterViSu and SR-Tesseler. Given that the best performer depended on the underlying distribution of localizations, we demonstrate an analysis pipeline based on statistical similarity measures that enables the selection of the most appropriate algorithm, and the optimized analysis parameters for real SMLM data. We propose that these standard simulated conditions, metrics and analysis pipeline become the basis for future analysis algorithm development and evaluation.


Asunto(s)
Algoritmos , Imagen Individual de Molécula , Análisis por Conglomerados , Benchmarking
4.
Nat Rev Neurosci ; 22(4): 237-255, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33712727

RESUMEN

The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.


Asunto(s)
Encéfalo/citología , Microscopía/métodos , Neuroglía/citología , Neuronas/citología , Coloración y Etiquetado/métodos , Animales , Humanos
5.
Nat Methods ; 19(7): 881-892, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697835

RESUMEN

Current imaging approaches limit the ability to perform multi-scale characterization of three-dimensional (3D) organotypic cultures (organoids) in large numbers. Here, we present an automated multi-scale 3D imaging platform synergizing high-density organoid cultures with rapid and live 3D single-objective light-sheet imaging. It is composed of disposable microfabricated organoid culture chips, termed JeWells, with embedded optical components and a laser beam-steering unit coupled to a commercial inverted microscope. It permits streamlining organoid culture and high-content 3D imaging on a single user-friendly instrument with minimal manipulations and a throughput of 300 organoids per hour. We demonstrate that the large number of 3D stacks that can be collected via our platform allows training deep learning-based algorithms to quantify morphogenetic organizations of organoids at multi-scales, ranging from the subcellular scale to the whole organoid level. We validated the versatility and robustness of our approach on intestine, hepatic, neuroectoderm organoids and oncospheres.


Asunto(s)
Imagenología Tridimensional , Organoides , Intestinos
6.
Mol Psychiatry ; 28(2): 946-962, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36258016

RESUMEN

Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer's disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid-liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn's nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Condensados Biomoleculares , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Enfermedad de Alzheimer/genética , Degeneración Lobar Frontotemporal/metabolismo
7.
Nature ; 557(7705): 381-386, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720660

RESUMEN

ß-arrestins are critical regulator and transducer proteins for G-protein-coupled receptors (GPCRs). ß-arrestin is widely believed to be activated by forming a stable and stoichiometric GPCR-ß-arrestin scaffold complex, which requires and is driven by the phosphorylated tail of the GPCR. Here we demonstrate a distinct and additional mechanism of ß-arrestin activation that does not require stable GPCR-ß-arrestin scaffolding or the GPCR tail. Instead, it occurs through transient engagement of the GPCR core, which destabilizes a conserved inter-domain charge network in ß-arrestin. This promotes capture of ß-arrestin at the plasma membrane and its accumulation in clathrin-coated endocytic structures (CCSs) after dissociation from the GPCR, requiring a series of interactions with membrane phosphoinositides and CCS-lattice proteins. ß-arrestin clustering in CCSs in the absence of the upstream activating GPCR is associated with a ß-arrestin-dependent component of the cellular ERK (extracellular signal-regulated kinase) response. These results delineate a discrete mechanism of cellular ß-arrestin function that is activated catalytically by GPCRs.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Animales , Biocatálisis , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Fosfatidilinositoles/metabolismo , Transporte de Proteínas , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
8.
Proc Natl Acad Sci U S A ; 117(39): 24526-24533, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929031

RESUMEN

Hippocampal pyramidal neurons are characterized by a unique arborization subdivided in segregated dendritic domains receiving distinct excitatory synaptic inputs with specific properties and plasticity rules that shape their respective contributions to synaptic integration and action potential firing. Although the basal regulation and plastic range of proximal and distal synapses are known to be different, the composition and nanoscale organization of key synaptic proteins at these inputs remains largely elusive. Here we used superresolution imaging and single nanoparticle tracking in rat hippocampal neurons to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDA receptors (NMDARs)-which play key roles in the use-dependent adaptation of glutamatergic synapses-along the dendritic arbor. We report significant changes in the nanoscale organization of GluN2B-NMDARs between proximal and distal dendritic segments, whereas the topography of GluN2A-NMDARs remains similar along the dendritic tree. Remarkably, the nanoscale organization of GluN2B-NMDARs at proximal segments depends on their interaction with calcium/calmodulin-dependent protein kinase II (CaMKII), which is not the case at distal segments. Collectively, our data reveal that the nanoscale organization of NMDARs changes along dendritic segments in a subtype-specific manner and is shaped by the interplay with CaMKII at proximal dendritic segments, shedding light on our understanding of the functional diversity of hippocampal glutamatergic synapses.


Asunto(s)
Dendritas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dendritas/genética , Ratas , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(25): 14503-14511, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513712

RESUMEN

The nanoscale co-organization of neurotransmitter receptors facing presynaptic release sites is a fundamental determinant of their coactivation and of synaptic physiology. At excitatory synapses, how endogenous AMPARs, NMDARs, and mGluRs are co-organized inside the synapse and their respective activation during glutamate release are still unclear. Combining single-molecule superresolution microscopy, electrophysiology, and modeling, we determined the average quantity of each glutamate receptor type, their nanoscale organization, and their respective activation. We observed that NMDARs form a unique cluster mainly at the center of the PSD, while AMPARs segregate in clusters surrounding the NMDARs. mGluR5 presents a different organization and is homogenously dispersed at the synaptic surface. From these results, we build a model predicting the synaptic transmission properties of a unitary synapse, allowing better understanding of synaptic physiology.


Asunto(s)
Modelos Neurológicos , Neuronas/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología , Microscopía Intravital , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Imagen Individual de Molécula
10.
Nat Methods ; 16(12): 1263-1268, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31636458

RESUMEN

Super-resolution microscopy offers tremendous opportunities to unravel the complex and dynamic architecture of living cells. However, current super-resolution microscopes are well suited for revealing protein distributions or cell morphology, but not both. We present a super-resolution platform that permits correlative single-molecule imaging and stimulated emission depletion microscopy in live cells. It gives nanoscale access to the positions and movements of synaptic proteins within the morphological context of growth cones and dendritic spines.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Animales , Células Cultivadas , Femenino , Humanos , Ratones , Ratas , Ratas Sprague-Dawley
11.
Nat Methods ; 16(6): 561, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31097821

RESUMEN

In the version of this paper originally published, Figure 4a contained errors that were introduced during typesetting. The bottom 11° ThunderSTORM image is an xz view but was incorrectly labeled as xy, and the low x-axis value in the four line profiles was incorrectly set as -60 instead of -50. These errors have been corrected in the PDF and HTML versions of the paper.

12.
Nat Methods ; 16(5): 387-395, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962624

RESUMEN

With the widespread uptake of two-dimensional (2D) and three-dimensional (3D) single-molecule localization microscopy (SMLM), a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort, we designed a competition to extensively characterize and rank the performance of 2D and 3D SMLM software packages. We generated realistic simulated datasets for popular imaging modalities-2D, astigmatic 3D, biplane 3D and double-helix 3D-and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D SMLM software and provides a holistic view of how the latest 2D and 3D SMLM packages perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against the current state of the art, and provides insight into the current limits of the field.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen Individual de Molécula/métodos , Programas Informáticos , Algoritmos
14.
Methods ; 174: 49-55, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32006677

RESUMEN

Super-resolution microscopy provides diffraction-unlimited optical access to the intricate morphology of neurons in living brain tissue, resolving their finest structural details, which are critical for neuronal function. However, as existing image analysis software tools have been developed for diffraction-limited images, they are generally not well suited for quantifying nanoscale structures like dendritic spines. We present SpineJ, a semi-automatic ImageJ plugin that is specifically designed for this purpose. SpineJ offers an intuitive and user-friendly graphical user interface, facilitating fast, accurate, and unbiased analysis of spine morphology.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Cuello/diagnóstico por imagen , Programas Informáticos , Columna Vertebral/diagnóstico por imagen , Algoritmos , Dendritas/fisiología , Microscopía Intravital , Microscopía Fluorescente/métodos , Cuello/anatomía & histología , Neuronas/citología , Neuronas/fisiología , Distribución Normal , Distribución de Poisson , Columna Vertebral/anatomía & histología , Factores de Tiempo
15.
Biophys J ; 119(6): 1157-1177, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882187

RESUMEN

Mammalian cells developed two main migration modes. The slow mesenchymatous mode, like crawling of fibroblasts, relies on maturation of adhesion complexes and actin fiber traction, whereas the fast amoeboid mode, observed exclusively for leukocytes and cancer cells, is characterized by weak adhesion, highly dynamic cell shapes, and ubiquitous motility on two-dimensional and in three-dimensional solid matrix. In both cases, interactions with the substrate by adhesion or friction are widely accepted as a prerequisite for mammalian cell motility, which precludes swimming. We show here experimental and computational evidence that leukocytes do swim, and that efficient propulsion is not fueled by waves of cell deformation but by a rearward and inhomogeneous treadmilling of the cell external membrane. Our model consists of a molecular paddling by transmembrane proteins linked to and advected by the actin cortex, whereas freely diffusing transmembrane proteins hinder swimming. Furthermore, continuous paddling is enabled by a combination of external treadmilling and selective recycling by internal vesicular transport of cortex-bound transmembrane proteins. This mechanism explains observations that swimming is five times slower than the retrograde flow of cortex and also that lymphocytes are motile in nonadherent confined environments. Resultantly, the ubiquitous ability of mammalian amoeboid cells to migrate in two dimensions or three dimensions and with or without adhesion can be explained for lymphocytes by a single machinery of heterogeneous membrane treadmilling.


Asunto(s)
Amoeba , Natación , Actinas , Animales , Adhesión Celular , Movimiento Celular , Linfocitos
16.
Nat Methods ; 14(12): 1184-1190, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29083400

RESUMEN

Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.


Asunto(s)
Bases de Datos Factuales , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Individual de Molécula/métodos , Animales , Células COS , Chlorocebus aethiops , Minería de Datos , Colorantes Fluorescentes , Células HeLa , Humanos , Proteínas de la Membrana/análisis , Transporte de Proteínas , Receptores de Neurotransmisores/análisis , Programas Informáticos , Flujo de Trabajo
17.
EMBO J ; 33(23): 2745-64, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25293574

RESUMEN

Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Espinas Dendríticas/fisiología , Modelos Biológicos , Densidad Postsináptica/metabolismo , Transmisión Sináptica/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Forminas , Proteínas del Tejido Nervioso/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas , Ratas , Ratas Sprague-Dawley , Estadísticas no Paramétricas
18.
Nat Methods ; 12(11): 1065-71, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26344046

RESUMEN

Localization-based super-resolution techniques open the door to unprecedented analysis of molecular organization. This task often involves complex image processing adapted to the specific topology and quality of the image to be analyzed. Here we present a segmentation framework based on Voronoï tessellation constructed from the coordinates of localized molecules, implemented in freely available and open-source SR-Tesseler software. This method allows precise, robust and automatic quantification of protein organization at different scales, from the cellular level down to clusters of a few fluorescent markers. We validated our method on simulated data and on various biological experimental data of proteins labeled with genetically encoded fluorescent proteins or organic fluorophores. In addition to providing insight into complex protein organization, this polygon-based method should serve as a reference for the development of new types of quantifications, as well as for the optimization of existing ones.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Receptores de Glicina/metabolismo , Algoritmos , Animales , Células COS , Chlorocebus aethiops , Análisis por Conglomerados , Biología Computacional , Simulación por Computador , Colorantes Fluorescentes/química , Humanos , Neuronas/metabolismo , Neuronas/fisiología , Oocitos/metabolismo , Reconocimiento de Normas Patrones Automatizadas , Programas Informáticos , Xenopus laevis
19.
Nat Methods ; 12(7): 641-4, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25961414

RESUMEN

Single-objective selective-plane illumination microscopy (soSPIM) is achieved with micromirrored cavities combined with a laser beam-steering unit installed on a standard inverted microscope. The illumination and detection are done through the same objective. soSPIM can be used with standard sample preparations and features high background rejection and efficient photon collection, allowing for 3D single-molecule-based super-resolution imaging of whole cells or cell aggregates. Using larger mirrors enabled us to broaden the capabilities of our system to image Drosophila embryos.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Drosophila/embriología
20.
Proc Natl Acad Sci U S A ; 112(22): 6997-7002, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26038554

RESUMEN

Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.


Asunto(s)
Actinas/metabolismo , Cadherinas/metabolismo , Cateninas/metabolismo , Movimiento Celular/fisiología , Conos de Crecimiento/metabolismo , Hipocampo/citología , Complejos Multiproteicos/metabolismo , Animales , Fenómenos Biomecánicos , Cartilla de ADN/genética , Embrión de Mamíferos/citología , Fluorescencia , Recuperación de Fluorescencia tras Fotoblanqueo , Inmunohistoquímica , Simulación de Dinámica Molecular , Reacción en Cadena de la Polimerasa , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA