Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410554, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989571

RESUMEN

Amide bioisoterism is a widely used strategy in drug development to fine-tune physicochemical, pharmacokinetic, and metabolic properties, eliminate toxicity and gain intellectual property rights in uncharted chemical space. Of these, oxetane-amines offer particularly exciting possibilities as bioisosteres, although they are less frequently investigated than warranted due to the lack of simple and widely applicable synthetic methods. Herein, we report a two-step, practical, modular, robust, and scalable method for the construction of oxetane-containing amide bioisosteres that relies on the readily available oxetan-3-one. This operationally simple procedure exploits the enhanced reactivity of the keto group of the commercially available oxetan-3-one to form amine-benzotriazole intermediates, which springloaded adducts are then reacted with various aliphatic and aromatic organometallic reagents under mild conditions to afford various amino-oxetanes in good to high yields. The simplicity and broad applicability of the method greatly facilitates the synthesis of derivatives that were previously difficult or impossible to produce. The usefulness of this method in the field medicinal chemistry was also demonstrated by eliminating the well-known metabolic problem of ketoconazole.

2.
J Org Chem ; 88(9): 6182-6191, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37125664

RESUMEN

Diastereoselective and diastereoconvergent syntheses of 2- and 3-substituted morpholine congeners are reported. Starting from tosyl-oxazatedine 1 and α-formyl carboxylates 2, base catalysis is utilized to yield morpholine hemiaminals. Their further synthetic elaborations allowed the concise constructions of conformationally rigid morpholines. The observed diastereoselectivities and the unusual diastereoconvergence in the photoredox radical processes seem to be the direct consequence of the avoidance of pseudo A1,3 strain between the C-3 substituent and the N-tosyl group and the anomeric effect of oxygen atoms.

3.
Angew Chem Int Ed Engl ; 62(13): e202216879, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36629402

RESUMEN

Prenylation is a ubiquitous late-stage modification in nature that often confers significantly improved bioactivity for secondary metabolites. While this lipophilic modification renders enhanced potency, the lipophilic tag(s) can diminish bioavailability and adversely alter drug transportation and metabolism. Thus, a functional-group-tolerant, mild, and selective late-stage C-H functionalization of prenyl tags would present a great potential in drug discovery programs but could also impact other fields, such as agrochemistry and chemical biology. Herein we report an exocyclic-strain-driven cross-metathesis reaction of prenyl tags, a formal double C-H oxidation protocol, that can be used for the selective late-stage derivatization of prenylated compounds and natural products. This methodology avoids the need for prefunctionalization of target molecules and affords ready access to an unprecedented library of oxo- and aza-prenylated complex molecules. Thus, in a broader context, this methodology extends late-stage functionalization beyond that available to nature.


Asunto(s)
Azetidinas , Productos Biológicos , Prenilación
4.
Angew Chem Int Ed Engl ; 62(2): e202214096, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36408745

RESUMEN

A widely applicable, practical, and scalable synthetic method for efficient ene-type double oxidation of alkenes is reported via a two-step alkenyl thianthrenium umpolung/Kornblum-Ganem oxidation strategy. This chemo- and stereoselective procedure allows easy access to various α,ß-unsaturated carbonyls that may be otherwise difficult or cumbersome to synthesize by conventional methods. For α-olefins, this metal-free transformation can be tuned according to synthetic needs to produce either the elusive (Z)-unsaturated aldehydes or their (E) counterparts. Moreover, this strategy has enabled streamlined synthesis of distinct butadienyl pheromones and kairomones.

5.
Angew Chem Int Ed Engl ; 62(35): e202303700, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37332089

RESUMEN

Mitragynine pseudoindoxyl, a kratom metabolite, has attracted increasing attention due to its favorable side effect profile as compared to conventional opioids. Herein, we describe the first enantioselective and scalable total synthesis of this natural product and its epimeric congener, speciogynine pseudoindoxyl. The characteristic spiro-5-5-6-tricyclic system of these alkaloids was formed through a protecting-group-free cascade relay process in which oxidized tryptamine and secologanin analogues were used. Furthermore, we discovered that mitragynine pseudoindoxyl acts not as a single molecular entity but as a dynamic ensemble of stereoisomers in protic environments; thus, it exhibits structural plasticity in biological systems. Accordingly, these synthetic, structural, and biological studies provide a basis for the planned design of mitragynine pseudoindoxyl analogues, which can guide the development of next-generation analgesics.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Mitragyna/química , Mitragyna/metabolismo , Alcaloides de Triptamina Secologanina/química , Analgésicos Opioides
6.
Angew Chem Int Ed Engl ; 59(32): 13547-13551, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32351014

RESUMEN

We report 8-step syntheses of (-)-minovincine and (-)-aspidofractinine using easily available and inexpensive reagents and catalyst. A key element of the strategy was the utilization of a sequence of cascade reactions to rapidly construct the penta- and hexacyclic frameworks. These cascade transformations included organocatalytic Michael-aldol condensation, a multistep anionic Michael-SN 2 cascade reaction, and Mannich reaction interrupted Fischer indolization. To streamline the synthetic routes, we also investigated the deliberate use of steric effect to secure various chemo- and regioselective transformations.

7.
Chemistry ; 25(9): 2179-2183, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30466176

RESUMEN

The reductive Ireland-Claisen rearrangement through borane-mediated hydrosilylation is reported. The method employs a borane catalyst with a special structural design and affords access to synthetically relevant products with high diastereoselectivity. Depending on electronic and structural parameters, the reaction can be coupled with a 1,3-allylic shift, thus the valence isomer of the Ireland-Claisen product is formed.

8.
J Org Chem ; 83(5): 2869-2874, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29378404

RESUMEN

An inexpensive and chromatography-free Mitsunobu methodology has been developed using low molecular weight and orthogonally phase-tagged reagents, a tert-butyl-tagged highly apolar phosphine, and a water-soluble DIAD analogue. The byproduct of the Mitsunobu reactions can be removed by sequential liquid-liquid extractions using traditional solvents such as hexanes, MeOH, water, and EtOAc. Owing to the orthogonal phase labeling, the spent reagents can be regenerated. This new variant of the Mitsunobu reaction promises to provide an alternative and complementary solution for the well-known separation problem of the Mitsunobu reaction without having to resort to expensive, large molecular weight reagents and chromatography.

9.
10.
Angew Chem Int Ed Engl ; 56(19): 5217-5221, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28378401

RESUMEN

Herein we report that a single frustrated Lewis pair (FLP) catalyst can promote the reductive etherification of aldehydes and ketones. The reaction does not require an exogenous acid catalyst, but the combined action of FLP on H2 , R-OH or H2 O generates the required Brønsted acid in a reversible, "turn on" manner. The method is not only a complementary metal-free reductive etherification, but also a niche procedure for ethers that would be either synthetically inconvenient or even intractable to access by alternative synthetic protocols.

11.
Angew Chem Int Ed Engl ; 56(32): 9512-9516, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28591474

RESUMEN

The development of a boron/nitrogen-centered frustrated Lewis pair (FLP) with remarkably high water tolerance is presented. As systematic steric tuning of the boron-based Lewis acid (LA) component revealed, the enhanced back-strain makes water binding increasingly reversible in the presence of relatively strong base. This advance allows the limits of FLP's hydrogenation to be expanded, as demonstrated by the FLP reductive amination of carbonyls. This metal-free catalytic variant displays a notably broad chemoselectivity and generality.

12.
Chemistry ; 22(50): 18101-18106, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27798820

RESUMEN

We report an expedient approach to highly functionalized cis- and trans-decalines that could function as key structural subunits toward the synthesis of various classes of terpenoids. Key to the strategy is an organocatalyzed Robinson annulation reaction of the Nazarov reagent that affords chiral enone building blocks with high enantioselectivities. The quaternary carbon stereogenic center can direct the subsequent reactions and allow the rapid and diastereoconvergent assembly of complex decalines with contiguous stereocenters.

13.
J Org Chem ; 80(18): 8990-6, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26301563

RESUMEN

An organocatalytic iterative assembly line has been developed in which nitromethane was sequentially coupled with two different enones using a combination of pseudoenantiomeric cinchona-based thiourea catalysts. Application of unsaturated aldehydes and ketones in the second step of the iterative sequence allows the construction of cyclic syn-ketols and acyclic compounds with multiple contiguous stereocenters. The combination of the multifunctional substrates and ambident electrophiles rendered some organocatalytic transformations possible that have not yet been realized in bifunctional noncovalent organocatalysis.

14.
Chem Soc Rev ; 43(15): 5387-99, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24877159

RESUMEN

How do skilled synthetic chemists develop good intuitive expertise? Why can we only access such a small amount of the available chemical space-both in terms of the reactions used and the chemical scaffolds we make? We argue here that these seemingly unrelated questions have a common root and are strongly interdependent. We performed a comprehensive analysis of organic reaction parameters dating back to 1771 and discovered that there are several anthropogenic factors that limit reaction parameters and thus the scope of synthetic chemistry. Nevertheless, many of the anthropogenic limitations such as narrow parameter space and the opportunity for rapid and clear feedback on the progress of reactions appear to be crucial for the acquisition of valid and reliable chemical intuition. In parallel, however, all of these same factors represent limitations for the exploration of available chemistry space and we argue that these are thus at least partly responsible for limited access to new chemistries. We advocate, therefore, that the present anthropogenic boundaries can be expanded by a more conscious exploration of "off-road" chemistry that would also extend the intuitive knowledge of trained chemists.

15.
Chemistry ; 20(19): 5631-9, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24677388

RESUMEN

A joint experimental-theoretical study of a bifunctional squaramide-amine-catalyzed Michael addition reaction between 1,3-dioxo nucleophiles and nitrostyrene has been undertaken to gain insight into the nature of bifunctional organocatalytic activation. For this highly stereoselective reaction, three previously proposed mechanistic scenarios for the critical CC bond-formation step were examined. Accordingly, the formation of the major stereoisomeric products is most plausible by one of the bifunctional pathways that involve electrophile activation by the protonated amine group of the catalyst. However, some of the minor product isomers are also accessible through alternative reaction routes. Structural analysis of transition states points to the structural invariance of certain fragments of the transition state, such as the protonated catalyst and the anionic fragment of approaching reactants. Our topological analysis provides deeper insight and a more general understanding of bifunctional noncovalent organocatalysis.


Asunto(s)
Amidas/química , Aminas/química , Catálisis , Estructura Molecular , Fenómenos Químicos Orgánicos , Teoría Cuántica , Estereoisomerismo
16.
J Phys Chem A ; 117(40): 10196-210, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23980872

RESUMEN

The kinetics of the photoreduction of four benzophenone derivatives by isopropyl alcohol was examined in acetonitrile, namely, tetra-meta-trifluoromethyl-, di-para-trifluoromethyl-, di-para-methoxy benzophenone, and, for comparison, the unsubstituted molecule itself. The basic spectroscopic (absorption and phosphorescence spectra) and photophysical (quantum yields and excited state energies) properties were established, and the key kinetic parameters were determined by the laser flash photolysis transient absorption technique. The rate coefficients of both the primary and secondary photoreduction reaction show remarkable dependence on ring substitution. This substantial effect is caused by the considerable change in the activation energy of the corresponding process. The experimental results as well as DFT quantum chemical calculations clearly indicate that these benzophenone derivatives all react as n-π* excited ketones, and the rate as well as the activation energy of the reduction steps change parallel with the reaction enthalpies, the determining factor being the stability of the forming aromatic ketyl radicals. The secondary photoreduction of benzophenones by the aliphatic ketyl radical formed in the primary step occurs via a hydrogen bonded complex. The binding energy of the hydrogen bonded complex between the aliphatic ketyl radical reactant and a solvent molecule is a critical parameter influencing the observable rate of the secondary photoreduction.

17.
ChemistryOpen ; 12(8): e202200083, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37548280

RESUMEN

Straightforward and general Passerini and Ugi procedures have been developed to incorporate four-membered heterocycles into highly functionalized scaffolds. Additionally, toslymethyl isocyanide (TosMIC)-derived Ugi adducts have been prepared, showcasing the prospect of the multicomponent reaction.

18.
Chemistry ; 18(7): 1918-22, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22262570

RESUMEN

Self-activation: Takemoto's catalyst gains access to its active conformation by equilibrating between its hydrogen-bonded intra- and intermolecular interactions in apolar aprotic solvents. By destabilization of the inactive monomeric conformations, the extended anti-anti thiourea conformation is preformed in the assembly. On leaving the assembly, this transient conformation has a structural preference to become a catalytically active monomeric species that has the potency for dual activation (see scheme).


Asunto(s)
Aminas/química , Tiourea/química , Catálisis , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Conformación Molecular , Estructura Molecular , Estereoisomerismo
19.
Chemistry ; 18(2): 574-85, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22161804

RESUMEN

Catalytic hydrogenation that utilizes frustrated Lewis pair (FLP) catalysts is a subject of growing interest because such catalysts offer a unique opportunity for the development of transition-metal-free hydrogenations. The aim of our recent efforts is to further increase the functional-group tolerance and chemoselectivity of FLP catalysts by means of size-exclusion catalyst design. Given that hydrogen molecule is the smallest molecule, our modified Lewis acids feature a highly shielded boron center that still allows the cleavage of the hydrogen but avoids undesirable FLP reactivity by simple physical constraint. As a result, greater latitude in substrate scope can be achieved, as exemplified by the chemoselective reduction of α,ß-unsaturated imines, ketones, and quinolines. In addition to synthetic aspects, detailed NMR spectroscopic, DFT, and (2)H isotopic labeling studies were performed to gain further mechanistic insight into FLP hydrogenation.


Asunto(s)
Ácidos de Lewis/química , Boranos/química , Catálisis , Hidrogenación , Modelos Moleculares , Oxidación-Reducción , Quinolinas/química
20.
J Med Chem ; 65(11): 7729-7745, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35613553

RESUMEN

A recently proposed strategy to overcome multidrug resistance (MDR) in cancer is to target the collateral sensitivity of otherwise resistant cells. We designed a library of 120 compounds to explore the chemical space around previously identified 8-hydroxyquinoline-derived Mannich bases with robust MDR-selective toxicity. We included compounds to study the effect of halogen and alkoxymethyl substitutions in R5 in combination with different Mannich bases in R7, a shift of the Mannich base from R7 to R5, as well as the introduction of an aromatic moiety. Cytotoxicity tests performed on a panel of parental and MDR cells highlight a strong influence of experimentally determined pKa values of the donor atom moieties, indicating that protonation and metal chelation are important factors modulating the MDR-selective anticancer activity of the studied compounds. Our results identify structural requirements increasing MDR-selective anticancer activity, providing guidelines for the development of more effective anticancer chelators targeting MDR cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Quelantes/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Bases de Mannich/química , Bases de Mannich/farmacología , Oxiquinolina/química , Oxiquinolina/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA