Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Bioprocess Biosyst Eng ; 47(3): 313-323, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38438572

RESUMEN

Molecular docking is an important computational analysis widely used to predict the interaction of enzymes with several starting materials for developing new valuable products from several starting materials, including oils and fats. In the present study, molecular docking was used as an efficient in silico screening tool to select biocatalysts with the highest catalytic performance in butyl esters production in a solvent-free system, an eco-friendly approach, via direct esterification of free fatty acids from Licuri oil with butanol. For such purpose, three commercial lipase preparations were used to perform molecular docking studies such as Burkholderia cepacia (BCL), Porcine pancreatic (PPL), and Candida rugosa (CRL). Concurrently, the results obtained in BCL and CRL are the most efficient in the esterification process due to their higher preference for catalyzing the esterification of lauric acid, the main fatty acid found in the licuri oil composition. Meanwhile, PPL was the least efficient because it preferentially interacts with minor fatty acids. Molecular docking with the experimental results indicated the better performance in the synthesis of esters was BCL. In conclusion, experimental results analysis shows higher enzymatic productivity in esterification reactions of 1294.83 µmol/h.mg, while the CRL and PPL demonstrated the lowest performance (189.87 µmol / h.mg and 23.96 µmol / h.mg, respectively). Thus, molecular docking and experimental results indicate that BCL is a more efficient lipase to produce fatty acids and esters from licuri oil with a high content of lauric acid. In addition, this study also demonstrates the application of molecular docking as an important tool for lipase screening to achieve more sustainable production of butyl esters with a view synthesis of biolubricants.


Asunto(s)
Ácidos Grasos , Lipasa , Animales , Porcinos , Lipasa/química , Simulación del Acoplamiento Molecular , Dominio Catalítico , Ácidos Grasos/química , Esterificación , Ésteres , Ácidos Láuricos , Enzimas Inmovilizadas/metabolismo
2.
Molecules ; 29(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338371

RESUMEN

This work presents a framework for evaluating hybrid nanoflowers using Burkholderia cepacia lipase. It was expanded on previous findings by testing lipase hybrid nanoflowers (hNF-lipase) formation over a wide range of pH values (5-9) and buffer concentrations (10-100 mM). The free enzyme activity was compared with that of hNF-lipase. The analysis, performed by molecular docking, described the effect of lipase interaction with copper ions. The morphological characterization of hNF-lipase was performed using scanning electron microscopy. Fourier Transform Infrared Spectroscopy performed the physical-chemical characterization. The results show that all hNF-lipase activity presented values higher than that of the free enzyme. Activity is higher at pH 7.4 and has the highest buffer concentration of 100 mM. Molecular docking analysis has been used to understand the effect of enzyme protonation on hNF-lipase formation and identify the main the main binding sites of the enzyme with copper ions. The hNF-lipase nanostructures show the shape of flowers in their micrographs from pH 6 to 8. The spectra of the nanoflowers present peaks typical of the amide regions I and II, current in lipase, and areas with P-O vibrations, confirming the presence of the phosphate group. Therefore, hNF-lipase is an efficient biocatalyst with increased catalytic activity, good nanostructure formation, and improved stability.


Asunto(s)
Cobre , Nanoestructuras , Estabilidad de Enzimas , Cobre/química , Lipasa/química , Simulación del Acoplamiento Molecular , Nanoestructuras/química , Enzimas Inmovilizadas/química , Espectroscopía Infrarroja por Transformada de Fourier , Iones
3.
Bioprocess Biosyst Eng ; 46(1): 53-67, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36409316

RESUMEN

The enzymatic production of isoamyl levulinate via esterification of isoamyl alcohol (IA) and levulinic acid (LA), a biomass-based platform chemical with attractive properties, in a solvent system has been performed in this study. For such a purpose, a low-cost liquid lipase (Eversa® Transform 2.0) immobilized by physical adsorption via hydrophobic interactions (mechanism of interfacial activation) on mesoporous poly(styrenene-divinylbenzene) (PSty-DVB) beads was used as heterogeneous biocatalyst. It was prepared at low ionic strength (5 mmol.L-1 buffer sodium acetate pH 5.0) and 25 â„ƒ using an initial protein loading of 40 mg.g-1 of support. Maximum protein loading of 31.2 ± 2.8 mg.g-1 of support and an immobilization yield of 83% was achieved. The influence of relevant factors (biocatalyst concentration and reaction temperature) on ester production was investigated using a central composite rotatable design (CCRD). Maximum acid conversion percentage of 65% was achieved after 12 h of reaction at 40 °C, 20% of mass of heterogeneous biocatalyst per mass of reaction mixture (20% m.m-1), and LA:IA molar ratio of 1:1.5 in a methyl isobutyl ketone (MIBK) medium. The biocatalyst retained around of 30% of its initial activity after five consecutive esterification batches under optimal experimental conditions. The proposed experimental procedure can be considered as an acceptable green process (EcoScale score of 66.5), in addition to the fact that a new strategy is proposed to sustainably produce a valuable industrial ester (isoamyl levulinate) from biomass-based materials using an immobilized and low-cost commercial lipase as catalyst.


Asunto(s)
Enzimas Inmovilizadas , Ésteres , Enzimas Inmovilizadas/química , Biomasa , Esterificación , Lipasa/química
4.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985609

RESUMEN

Crude olive pomace oil (OPO) is a by-product of olive oil extraction. In this study, low-calorie structured triacylglycerols (TAGs) were produced by acidolysis of crude OPO with medium-chain fatty acids (caprylic, C8:0; capric, C10:0) or interesterification with their ethyl ester forms (C8EE, C10EE). These new TAGs present long-chain fatty acids (L) at position sn-2 and medium-chain fatty acids (M) at positions sn-1,3 (MLM). Crude OPO exhibited a high acidity (12.05-28.75% free fatty acids), and high contents of chlorophylls and oxidation products. Reactions were carried out continuously in a packed-bed bioreactor for 70 h, using sn-1,3 regioselective commercial immobilized lipases (Thermomyces lanuginosus lipase, Lipozyme TL IM; and Rhizomucor miehei lipase, Lipozyme RM IM), in solvent-free media at 40 °C. Lipozyme RM IM presented a higher affinity for C10:0 and C10EE. Lipozyme TL IM preferred C10:0 over C8:0 but C8EE over C10EE. Both biocatalysts showed a high activity and operational stability and were not affected by OPO acidity. The New TAG yields ranged 30-60 and the specific productivity ranged 0.96-1.87 g NewTAG/h.g biocatalyst. Lipozyme RM IM cost is more than seven-fold the Lipozyme TL IM cost. Therefore, using Lipozyme TL IM and crude acidic OPO in a continuous bioreactor will contribute to process sustainability for structured lipid production by lowering the cost of the biocatalyst and avoiding oil refining.


Asunto(s)
Dietética , Olea , Olea/metabolismo , Aceites de Plantas , Grasas de la Dieta , Triglicéridos , Ácidos Grasos , Aceite de Oliva , Lipasa/metabolismo , Esterificación , Enzimas Inmovilizadas/metabolismo
5.
Bioprocess Biosyst Eng ; 45(7): 1149-1162, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35585433

RESUMEN

Lipases (E.C. 3.1.1.3) have buried active sites and used access tunnels in the transport of substrates and products for biotransformation processes. Computational methods are used to predict the trajectory and energy profile of ligands through these tunnels, and they complement the experimental methodologies because they filter data, optimizing laboratory time and experimental costs. Access tunnels of Burkholderia cepacia lipase (BCL), Candida rugosa lipase (CRL), and porcine pancreas lipase (PPL) and the transport of fatty acids, alcohols and esters through the tunnels were evaluated using the online server CaverWeb V1.0, and server calculation results were compared with experimental data (productivity). BCL showed higher productivity with palmitic acid-C16:0 (4029.95 µmol/h mg); CRL obtained productivity for oleic acid-C18:1 (380.80 µmol/h mg), and PPL achieved productivity for lauric acid-C12:0 (71.27 µmol/h mg). The highest probability of transport for BCL is through the tunnels 1 and 2, for CRL through the tunnel 1, and for PPL through the tunnels 1, 2, 3 and 4. Thus, the best in silico result was the transport of the substrates palmitic acid and ethanol and product ethyl palmitate in tunnel 1 of BCL. This result corroborates with the best result for the productivity data (higher productivity for BCL with palmitic acid-4029.95 µmol/h mg). The combination of in silico evaluation and experimental data gave similar results, demonstrating that in silico approaches are a promising alternative for reducing screening tests and minimizing laboratory time in the bio-catalysis area by identifying the lipases with the greatest reaction potential, as in the case of this proposal.


Asunto(s)
Burkholderia cepacia , Lipasa , Animales , Candida/metabolismo , Lipasa/química , Ácido Oléico , Ácidos Palmíticos , Porcinos
6.
World J Microbiol Biotechnol ; 39(1): 25, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36422728

RESUMEN

In recent years, fluctuating global fossil fuel market prices and growing concern about environmental pollution have increased efforts to obtain novel value-added products from renewable agricultural biomass. To this end, a wide variety of triacylglycerols (edible and non-edible oils and fats) and their derivatives (free fatty acids or monoalkyl esters) stand out as promising feedstocks for the production of biolubricant base stocks, due to their biodegradability, excellent physicochemical properties, and sustainable nature. These raw materials can be transformed into biolubricants using chemical or biochemical (lipases) catalysts, with the enzymatic production of biolubricants using lipases as catalysts being recognized as an environmentally friendly approach. The present mini-review highlights recent advances in this field, published in the last three years. The different chemical modification processes used to develop a wide variety of industrial biolubricant base stocks are comprehensively reviewed, with exploration of future prospects for industrial production via the enzymatic route. This study contributes to the current state-of-the-art, identifying relevant research questions and providing important technical information for new applications of lipases in oleochemical manufacturing industries.


Asunto(s)
Ésteres , Lipasa , Triglicéridos , Aceites de Plantas , Industrias
7.
Biotechnol Appl Biochem ; 68(4): 801-808, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33180374

RESUMEN

Guava seed biochar appears as a new alternative of the effective support to the immobilization of Burkholderia cepacia lipase (BCL) by physical adsorption. The objective of this work was to evaluate the potential of this immobilized biocatalyst in the transesterification reaction of crude coconut oil and ethanol and to understand the mechanism of the reaction through the study of molecular docking. The best loading of BCL was determined to be 0.15 genzyme /gsupport having a hydrolytic activity of 260 U/g and 54% immobilization yield. The products of transesterification reaction produced a maximum yield at 40 °C under different reaction conditions. The monoacylglycerols (MAGs) conversion of 59% was using substrate molar ratio oil:ethanol of 1:7 with the reaction time of 24 H. In addition, the highest ethyl esters yield (48%) had the molar ratio of 1:7 with the reaction time of 96 H and maximum conversion of diacylglycerols (DAGs) was 30% with the molar ratio of 1:6 with the reaction time of 24 H. Molecular Docking was applied to clarify the mechanisms of transesterification reaction at the molecular level. MAGs and DAGs are compounds with excellent emulsifying properties used in industrial production of several bioproducts such as cosmetic, pharmaceuticals, foods, and lubricants.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia cepacia/enzimología , Carbón Orgánico/química , Aceite de Coco/química , Enzimas Inmovilizadas/química , Lipasa/química , Esterificación
8.
Bioprocess Biosyst Eng ; 44(1): 195-208, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32892287

RESUMEN

The use of microorganisms capable of mediating the bioprecipitation process can be an important application in the self-healing processes of cement specimens. Thus, the present study identified and evaluated five Bacillus strains for potential application in the protocol of self-healing via bioprecipitation. Cell growth, enzyme production, and kinetic parameters conditions were evaluated during the fermentation process. Based on the analysis of 16S rDNA in conjunction with biochemical testing, results demonstrate that the strains are either Bacillus cereus or Bacillus thuringiensis. Strategically it was found that the addition of glycerol to fermentative medium was essential to increase the bacterial concentration (≈ 4.2 × 107 cells mL-1) and production of the enzyme urease (≈ 3.623,2 U.mL-1). The addition of this medium after 40 days of fermentation promoted the self-healing of cracks and increased compressive strength in ≈ 14.2% of the cementitious specimens; therefore, increasing the sustainability and engineering properties of cement-based materials.


Asunto(s)
Bacillus cereus/crecimiento & desarrollo , Bacillus thuringiensis/crecimiento & desarrollo , Materiales de Construcción
9.
Bioprocess Biosyst Eng ; 44(1): 57-66, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32767112

RESUMEN

A new design of cross-linked enzyme aggregates (CLEAs) of Burkholderia cepacia lipase (BCL) based mainly on the use of lignocellulosic residue of palm fiber as an additive was proposed. Different parameters for the preparation of active CLEAs in the hydrolysis of olive oil, such as precipitation agents, crosslinking agent concentration, additives, and coating agents were investigated. The highest activity yield (121.1 ± 0.1%) and volumetric activity (1578.1 ± 2.5 U/mL) were achieved for CLEAs prepared using the combination of a coating step with Triton® X-100 and polyethyleneimine plus the use of palm fiber as an additive. The variations of the secondary structures of BCL-CLEAs were analyzed by second-derivative infrared spectra, mainly indicating a reduction of the α-helix structure, which was responsible for the lipase activation in the supramolecular structure of the CLEAs. Thus, these results provided evidence of an innovative design of BCL-CLEAs as a sustainable and biocompatible opportunity for biotechnology applications.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia cepacia/enzimología , Enzimas Inmovilizadas/química , Lipasa/química , Estabilidad de Enzimas , Cinética
10.
Bioprocess Biosyst Eng ; 44(10): 2141-2151, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34037849

RESUMEN

In the present study, we demonstrated the use of molecular docking as an efficient in silico screening tool for lipase-triglyceride interactions. Computational simulations using the crystal structures from Burkholderia cepacia lipase (BCL), Thermomyces lanuginosus lipase (TLL), and pancreatic porcine lipase (PPL) were performed to elucidate the catalytic behavior with the majority triglycerides present in Licuri oil, as follows: caprilyl-dilauryl-glycerol (CyLaLa), capryl-dilauryl-glycerol (CaLaLa), capryl-lauryl-myristoyl-glycerol (CaLaM), and dilauryl-myristoyl-glycerol (LaLaM). The computational simulation results showed that BCL has the potential to preferentially catalyze the major triglycerides present in Licuri oil, demonstrating that CyLaLa, (≈25.75% oil composition) interacts directly with two of the three amino acid residues in its catalytic triad (Ser87 and His286) with the lowest energy (-5.9 kcal/mol), while other triglycerides (CaLaLa, CaLaM, and LaLaM) interact with only one amino acid (His286). In one hard, TLL showed a preference for catalyzing the triglyceride CaLaLa also interacting with His286 residue, but, achieving higher binding energies (-5.3 kcal/mol) than found in BCL (-5.7 kcal/mol). On the other hand, PPL prefers to catalyze only with LaLaM triglyceride by His264 residue interaction. When comparing the computational simulations with the experimental results, it was possible to understand how BCL and TLL display more stable binding with the majority triglycerides present in the Licuri oil, achieving conversions of 50.86 and 49.01%, respectively. These results indicate the production of fatty acid concentrates from Licuri oil with high lauric acid content. Meanwhile, this study also demonstrates the application of molecular docking as an important tool for lipase screening to reach a more sustainable production of fatty acid concentrates from vegetable oils.


Asunto(s)
Arecaceae/química , Biología Computacional/métodos , Lipasa/metabolismo , Aceites de Plantas/química , Triglicéridos/metabolismo , Animales , Burkholderia cepacia/enzimología , Catálisis , Eurotiales/enzimología , Especificidad por Sustrato , Porcinos , Termodinámica
11.
Biotechnol Appl Biochem ; 67(3): 404-413, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31930535

RESUMEN

Here, we have assessed the use of one packed bed or two packed bed reactors in series in which Burkholderia cepacia lipase (BCL) was immobilized on protic ionic liquid (PIL)-modified silica and used as a biocatalyst for the transesterification of crude coconut oil. Reaction parameters including volumetric flow, temperature, and molar ratio were evaluated. The conversion of transesterification reaction products (ethyl esters) was determined using gas chromatography and the quantities of intermediate products (diglyceride and monoglyceride [MG]) were assessed using high-performance liquid chromatography. Packed bed reactors in series produced ethyl esters with the greatest efficiency, achieving 65.27% conversion after 96 H at a volumetric flow rate of 0.50 mL Min-1 at 40 °C and a 1:9 molar ratio of oil to ethanol. Further, within the first 24 H of the reaction, increased MG (54.5%) production was observed. Molecular docking analyses were performed to evaluate the catalytic step of coconut oil transesterification in the presence of BCL. Molecular docking analysis showed that triglycerides have a higher affinity energy (-5.7 kcal mol-1 ) than the smallest MG (-6.0 kcal mol-1 ), therefore, BCL catalyzes the conversion of triglycerides rather than MG, which is consistent with experimental results.


Asunto(s)
Reactores Biológicos , Aceite de Coco/metabolismo , Ésteres/metabolismo , Lipasa/metabolismo , Biocatálisis , Burkholderia cepacia/enzimología , Aceite de Coco/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Ésteres/química , Lipasa/química
12.
Biotechnol Appl Biochem ; 66(5): 823-832, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31206795

RESUMEN

Alternative strategies are required to develop the optimized production of fatty acids using biocatalysis; molecular docking and response surface methodology are efficient tools to achieve this goal. In the present study, we demonstrate a novel and robust methodology for the sustainable production of fatty acids from Moringa oleifera Lam oil using lipase-catalyzed hydrolysis (without the presence of emulsifiers or buffer solutions). Seven commercial lipases from Candida rugosa (CRL), Burkholderia cepacia (BCL), Thermomyces lanuginosus (TLL), Rhizopus niveus (RNL), Pseudomonas fluorescens (PFL), Mucor javanicus (MJL), and porcine pancreas (PPL) were used as biocatalysts. Initial screening showed that CRL had the highest hydrolytic activity (hydrolysis degree of 81%). Molecular docking analysis contributed to the experimental results, showing that CRL displays more stable binding free energy with oleic acid (C18:1), which is the fatty acid of highest concentration in Moringa oleifera Lam oil. To evaluate and optimize the hydrolysis process, response surface methodology (RSM) was used. The effect of temperature, mass ratio oil:water, and hydrolytic activity on enzymatic hydrolysis was evaluated by central composite design using RSM. Under the optimized conditions (temperature of 37 °C, mass ratio oil:water of 25%, and hydrolytic activity of 550 U goil -1 ), the maximum hydrolysis degree (100%) was achieved. The present study provides a robust method for the enzymatic hydrolysis of different oils for efficient and sustainable fatty acid production.


Asunto(s)
Ácidos Grasos/análisis , Lipasa/metabolismo , Simulación del Acoplamiento Molecular , Moringa oleifera/metabolismo , Aceites de Plantas/metabolismo , Biocatálisis , Hidrólisis , Moringa oleifera/química , Aceites de Plantas/química
13.
Int J Mol Sci ; 19(7)2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29933608

RESUMEN

Treated silica xerogel with protic ionic liquid (PIL) and bifunctional agents (glutaraldehyde and epichlorohydrin) is a novel support strategy used in the effective immobilization of lipase from Burkholderia cepacia (LBC) by covalent binding. As biocatalysts with the highest activity recovery yields, LBC immobilized by covalent binding with epichlorohydrin without (203%) and with PIL (250%), was assessed by the following the hydrolysis reaction of olive oil and characterized biochemically (Michaelis⁻Menten constant, optimum pH and temperature, and operational stability). Further, the potential transesterification activity for three substrates: sunflower, soybean, and colza oils, was also determined, achieving a conversion of ethyl esters between 70 and 98%. The supports and the immobilized lipase systems were characterized using Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), elemental analysis, and thermogravimetric (TG) analysis.


Asunto(s)
Proteínas Bacterianas/química , Enzimas Inmovilizadas/química , Líquidos Iónicos/química , Lipasa/química , Aceite de Oliva/química , Aceite de Soja/química , Aceite de Girasol/química , Proteínas Bacterianas/aislamiento & purificación , Biocombustibles/provisión & distribución , Burkholderia cepacia/química , Burkholderia cepacia/enzimología , Reactivos de Enlaces Cruzados/química , Enzimas Inmovilizadas/aislamiento & purificación , Epiclorhidrina/química , Esterificación , Geles , Glutaral/química , Humanos , Concentración de Iones de Hidrógeno , Lipasa/aislamiento & purificación , Dióxido de Silicio/química , Temperatura
14.
Bioprocess Biosyst Eng ; 38(5): 805-14, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25391807

RESUMEN

Candida rugosa lipase (CRL) was immobilized on an eco-friendly support poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV), by physical adsorption, using different ionic liquids (ILs) as immobilization additives. This was to investigate the influence of cationic core ([C4mpy]Cl, [C4min]Cl), of anions ([C4min]Cl, [C4min]N(CN)2, [C4min]Tf2N), and of cation chain length ([C2min]Tf2N, [C4min]Tf2N) in the immobilization process. The immobilized biocatalysts (IB) were characterized with respect to the morphological, physico-chemical properties, total activity recovery yield (Ya), and biochemical properties of more efficient IB were evaluated. Initially, it was found that the change of cationic core did not influence in Ya compared to the control. With change of anions, it was seen that the best result was obtained for the more hydrophobic anion (Tf2N), and finally increasing the cation chain length increased Ya. IB most efficient with [C4min]Tf2N obtained 78 % of Ya, more than twice the control value (30 %) and a considerable enhancement of operational stability compared with the control.


Asunto(s)
Candida/enzimología , Enzimas Inmovilizadas/química , Microbiología Industrial , Líquidos Iónicos/química , Lipasa/química , Adsorción , Aniones , Catálisis , Cationes , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Iones , Microscopía Electrónica de Rastreo , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
15.
Bioprocess Biosyst Eng ; 36(10): 1385-94, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23673896

RESUMEN

A new source of lipase from Bacillus sp. ITP-001 was immobilized by physical adsorption on the polymer poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) in aqueous solution. The support and immobilized lipase were characterised, compared to the lyophilised lipase, with regard to the specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (dp) by nitrogen adsorption, differential scanning calorimetry, thermogravimetric analysis, chemical composition analysis, Fourier transform infrared spectroscopy and biochemical properties. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0, whereas the optimum pH for the free enzyme was at pH 7.0; the optimum temperature of activity was 80 and 37 °C for the free and immobilized enzyme, respectively. The inactivation rate constant for the immobilized enzyme at 37 °C was 0.0038 h⁻¹ and the half-life was 182.41 h. The kinetic parameters obtained for the immobilized enzyme gave a Michaelis-Menten constant (K(m)) of 49.10 mM and a maximum reaction velocity (V(max)) of 205.03 U/g. Furthermore, the reuse of the lipase immobilized by adsorption allowed us to observe that it could be reused for 10 successive cycles, duration of each cycle (1 h), maintaining 33 % of the initial activity.


Asunto(s)
Bacillus/enzimología , Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Adsorción , Rastreo Diferencial de Calorimetría , Estabilidad de Enzimas , Semivida , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termogravimetría
16.
J Ind Microbiol Biotechnol ; 39(2): 289-98, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21870100

RESUMEN

The overall objective of this study is to evaluate the morphological [scanning electron microscopy (SEM)], physicochemical [differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), chemical composition analysis, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR)], and biochemical properties of Candida rugosa lipase (CRL) immobilized on a natural biopolymer poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) in aqueous solution. CRL was immobilized by physical adsorption with efficiency of 30%. Compared with free CRL enzyme, there were slight changes in immobilized CRL activity as a function of temperature (from 37°C to 45°C), but a similar optimal pH value of 7.0. Inactivation rate constants for immobilized CRL enzyme were 0.009 and 0.334 h⁻¹, and half-lives were 77 and 2 h at 40°C and 60°C, respectively. Kinetic parameters obtained for immobilized CRL include the Michaelis-Menten constant of K(m) = 213.18 mM and maximum reaction velocity of V(max) = 318.62 U/g. The operational stability of immobilized CRL was tested repeatedly, and after 12 cycles of reuse, the enzyme retained 50% activity. Based on our results, we propose that PHBV-immobilized CRL could serve as a promising biocatalyst in several industrial applications.


Asunto(s)
Candida/enzimología , Enzimas Inmovilizadas/química , Lipasa/química , Poliésteres/química , Adsorción , Biopolímeros/química , Biotecnología , Candida/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Tecnología Química Verde , Cinética , Lipasa/metabolismo , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
17.
J Ind Microbiol Biotechnol ; 39(4): 529-36, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22120648

RESUMEN

Optimal conditions for the microwave-assisted enzymatic synthesis of biodiesel have been developed by a full 2² factorial design leading to a set of seven runs with different combinations of molar ratio and temperature. The main goal was to reduce the reaction time preliminarily established by a process of conventional heating. Reactions yielding biodiesel, in which beef tallow and ethanol used as raw materials were catalyzed by lipase from Burkholderia cepacia immobilized on silica-PVA and microwave irradiations within the range of 8-15 W were performed to reach the reaction temperature. Under optimized conditions (1:6 molar ratio of beef tallow to ethanol molar ratio at 50°C) almost total conversion of the fatty acid presented in the original beef tallow was converted into ethyl esters in a reaction that required 8 h, i.e., a productivity of about 92 mg ethyl esters g⁻¹ h⁻¹. This represents an increase of sixfold for the process carried out under conventional heating. In general, the process promises low energy demand and higher biodiesel productivity. The microwave assistance speeds up the enzyme catalyzed reactions, decreases the destructive effects on the enzyme of the operational conditions such as, higher temperature, stability, and specificity to its substrate, and allows the entire reaction medium to be heated uniformly.


Asunto(s)
Biocombustibles , Burkholderia cepacia/enzimología , Grasas/metabolismo , Microbiología Industrial , Lipasa/metabolismo , Microondas , Animales , Catálisis , Bovinos , Enzimas Inmovilizadas , Etanol , Lipasa/química , Temperatura
18.
Ecotoxicol Environ Saf ; 83: 55-62, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22742861

RESUMEN

A wide range of ionic liquids (ILs), containing a diverse set of cations, anions and alkyl chain lengths, was screened for their antimicrobial activity toward four microorganisms, Escherichia coli CCT-0355, Staphylococcus aureus ATCC-6533, Fusarium sp. LM03 and Candida albicans ATCC-76645. For that purpose an adaptation of the Agar Diffusion test was validated and successfully applied as a rapid screen method to identify toxic ILs, avoiding the use of more complex and expensive techniques. The effects of the cation alkyl chain length were studied, being observed both the "alkyl side chain" effect (increase in antimicrobial activity with the elongation of the alkyl chain) and "cut-off" effect (beyond a given chain length, the toxicity cannot be increased any further). Imidazolium-based ILs have in general, negative effects on the growth of these microorganisms dependent on the anion and alkyl chain length (growth inhibition halo from 1.98±0.04 mm for [C(2)mim]Cl to 39.53±0.81 mm for [C(10)mim]Cl). On the opposite, the phosphonium-based ILs do not seem to have negative effects for the longest alkyl chains (growth inhibition halos between 0.00±0.00 and 7.30±0.42 mm). It was also observed that the alkyl chain, cation family, and anion moiety all have significant effects on the antimicrobial activity these effects being well correlated with the lipophilicity of the ILs tested. The results also show that the microorganisms responses to the diverse ILs tested are dependent on their morphologic differences.


Asunto(s)
Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Fusarium/efectos de los fármacos , Líquidos Iónicos/toxicidad , Staphylococcus aureus/efectos de los fármacos , Pruebas de Toxicidad/métodos , Agar/química , Aniones/química , Antiinfecciosos/toxicidad , Cationes/química , Líquidos Iónicos/química , Miconazol/toxicidad , Tetraciclina/toxicidad
19.
Bioresour Technol ; 346: 126646, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34974092

RESUMEN

Olive pomace oil (OPO), a by-product of olive oil industry, is directly consumed after refining. The novelty of this study consists of the direct use of crude high acidic OPO (3.4-20% acidity) to produce added-value compounds, using sn-1,3-regioselective lipases: (i) low-calorie dietetic structured lipids (SL) containing caprylic (C8:0) or capric (C10:0) acids by acidolysis or interesterification with their ethyl esters, (ii) fatty acid methyl esters (FAME) for biodiesel, and (iii) sn-2 monoacylglycerols (emulsifiers), as by-product of FAME production by methanolysis. Immobilized Rhizomucor miehei lipase showed similar activity in acidolysis and interesterification for SL production (yields: 47.8-53.4%, 7 h, 50℃) and was not affected by OPO acidity. Batch operational stability decreased with OPO acidity, but it was at least three-fold in interesterification that in acidolysis. Complete conversion of OPO into FAME and sn-2 monoacylglycerols was observed after 3 h-transesterification (glycerol stepwise addition) and lipase deactivation was negligeable after 11 cycles.


Asunto(s)
Biocombustibles , Olea , Enzimas Inmovilizadas/metabolismo , Esterificación , Lipasa/metabolismo , Olea/metabolismo , Aceites de Plantas
20.
Biotechnol Prog ; 37(1): e3064, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776684

RESUMEN

Bioimprinting is an easy, sustainable and low-cost technique that promotes a printing of potential substrates on enzyme structure, inducing a more selective and stable conformation. Bioimprinting promotes conformational changes in enzymes, resulting in better catalytic performance. In this work, the effect of bioimprinting of Burkholderia cepacia lipase (BCL) and porcine pancreatic extracts (PPE) with four different fatty acids (lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), and stearic acid (C18:0)) was investigated. The results demonstrated that the better bioimprinting effect was in BCL with lauric acid in esterification reaction, promoting BCL activation in which relative enzyme activity was 70 times greater than nonimprinted BCL. Bioimprinting results were influenced by the carbon chain length of fatty acids imprinted in the BCL, in which the effects were weaker with the chain increase. Molecular docking was performed to better understand the bioimprinting method. The results of these simulations showed that indeed all fatty acids were imprinted in the active site of BCL. However, lauric acid presented the highest imprinting preference in the active site of BCL, resulting in the highest relative activity. Furthermore, Fourier transform infrared (FTIR) analysis confirmed important variations in secondary structure of bioimprinting BCL with lauric acid, in which there was a reduction in the α-helix content and an increase in the ß-sheet content that facilitated substrate access to the active site of BCL and led higher rigidity, resulting in high activity. Bioimprinted BCL with lauric acid showed excellent operational stability in esterification reaction, maintaining its original relative activity after five successive cycles. Thus, the results show that bioimprinting of BCL with lauric acid is a successful strategy due to its high catalytic activity and reusability.


Asunto(s)
Bioimpresión/instrumentación , Burkholderia cepacia/enzimología , Ácidos Grasos/metabolismo , Lipasa/metabolismo , Páncreas/enzimología , Animales , Bioimpresión/métodos , Dominio Catalítico , Esterificación , Lipasa/química , Simulación del Acoplamiento Molecular , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA