Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 69(6): 1046-1061.e5, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547717

RESUMEN

A single mutagen can generate multiple different types of DNA lesions. How different repair pathways cooperate in complex DNA lesions, however, remains largely unclear. Here we measured, clustered, and modeled the kinetics of recruitment and dissociation of 70 DNA repair proteins to laser-induced DNA damage sites in HeLa cells. The precise timescale of protein recruitment reveals that error-prone translesion polymerases are considerably delayed compared to error-free polymerases. We show that this is ensured by the delayed recruitment of RAD18 to double-strand break sites. The time benefit of error-free polymerases disappears when PARP inhibition significantly delays PCNA recruitment. Moreover, removal of PCNA from complex DNA damage sites correlates with RPA loading during 5'-DNA end resection. Our systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Inestabilidad Genómica , Células HeLa , Humanos , Cinética , Modelos Genéticos , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
2.
iScience ; 27(9): 110826, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39310780

RESUMEN

During DNA repair, ATM-induced H2AX histone phosphorylation and MDC1 recruitment spread megabases beyond the damage site. While loop extrusion has been suggested to drive this spread, the underlying mechanism remains unclear. Herein, we provide two lines of evidence that loop extrusion is not the only driver of damage-induced γH2AX spread. First, cohesin loader NIPBL and cohesin subunit RAD21 accumulate considerably later than the phosphorylation of H2AX and MDC1 recruitment at micro-IR-induced damage. Second, auxin-induced RAD21 depletion does not affect γH2AX/MDC1 spread following micro-irradiation or DSB induction by zeocin. To determine if diffusion of activated ATM could account for the observed behavior, we measured the exchange rate and diffusion constants of ATM and MDC1 within damaged and unperturbed chromatin. Using these measurements, we introduced a quantitative model in which the freely diffusing activated ATM phosphorylates H2AX. This model faithfully describes the dynamics of ATM and subsequent γH2AX/MDC1 spread at complex DNA lesions.

3.
Viruses ; 16(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39205315

RESUMEN

The efficiency of virus internalization into target cells is a major determinant of infectivity. SARS-CoV-2 internalization occurs via S-protein-mediated cell binding followed either by direct fusion with the plasma membrane or endocytosis and subsequent fusion with the endosomal membrane. Despite the crucial role of virus internalization, the precise kinetics of the processes involved remains elusive. We developed a pipeline, which combines live-cell microscopy and advanced image analysis, for measuring the rates of multiple internalization-associated molecular events of single SARS-CoV-2-virus-like particles (VLPs), including endosome ingression and pH change. Our live-cell imaging experiments demonstrate that only a few minutes after binding to the plasma membrane, VLPs ingress into RAP5-negative endosomes via dynamin-dependent scission. Less than two minutes later, VLP speed increases in parallel with a pH drop below 5, yet these two events are not interrelated. By co-imaging fluorescently labeled nucleocapsid proteins, we show that nucleocapsid release occurs with similar kinetics to VLP acidification. Neither Omicron mutations nor abrogation of the S protein polybasic cleavage site affected the rate of VLP internalization, indicating that they do not confer any significant advantages or disadvantages during this process. Finally, we observe that VLP internalization occurs two to three times faster in VeroE6 than in A549 cells, which may contribute to the greater susceptibility of the former cell line to SARS-CoV-2 infection. Taken together, our precise measurements of the kinetics of VLP internalization-associated processes shed light on their contribution to the effectiveness of SARS-CoV-2 propagation in cells.


Asunto(s)
COVID-19 , Endosomas , SARS-CoV-2 , Internalización del Virus , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Humanos , Cinética , COVID-19/virología , COVID-19/metabolismo , Endosomas/metabolismo , Endosomas/virología , Endocitosis , Animales , Concentración de Iones de Hidrógeno , Chlorocebus aethiops , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Membrana Celular/metabolismo , Membrana Celular/virología , Virión/metabolismo
4.
Int J Biochem Cell Biol ; 128: 105839, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32846207

RESUMEN

Chromatin regulators control transcription and replication, however if and how they might influence the coordination of these processes still is largely unknown. RUVBL1 and the related ATPase RUVBL2 participate in multiple nuclear processes and are implicated in cancer. Here, we report that both the excess and the deficit of the chromatin regulator RUVBL1 impede DNA replication as a consequence of altered transcription. Surprisingly, cells that either overexpressed or were silenced for RUVBL1 had slower replication fork rates and accumulated phosphorylated H2AX, dependent on active transcription. However, the mechanisms of transcription-dependent replication stress were different when RUVBL1 was overexpressed and when depleted. RUVBL1 overexpression led to increased c-Myc-dependent pause release of RNAPII, as evidenced by higher overall transcription, much stronger Ser2 phosphorylation of Rpb1- C-terminal domain, and enhanced colocalization of Rpb1 and c-Myc. RUVBL1 deficiency resulted in increased ubiquitination of Rpb1 and reduced mobility of an RNAP subunit, suggesting accumulation of stalled RNAPIIs on chromatin. Overall, our data show that by modulating the state of RNAPII complexes, RUVBL1 deregulation induces replication-transcription interference and compromises genome integrity during S-phase.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , ARN Polimerasa II/metabolismo , Fase S , Estrés Fisiológico , Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas Portadoras/genética , ADN Helicasas/genética , Humanos , Células PC-3 , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética
5.
Nucleic Acids Res ; 34(15): 4138-46, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16935878

RESUMEN

The process of DNA replication includes duplex unwinding, followed immediately by DNA synthesis. In eukaryotes, DNA synthesis is disturbed in damaged DNA regions, in replication slow zones, or as a result of insufficient nucleotide level. This review aims to discuss the mechanisms that coordinate DNA unwinding and synthesis, allowing replication to be completed even in the presence of genomic insults. There is a growing body of evidence which suggests that S-phase checkpoint pathways regulate both replicative unwinding and DNA synthesis, to synchronize the two processes, thus ensuring genome stability.


Asunto(s)
Replicación del ADN/fisiología , Fase S/fisiología , Saccharomyces cerevisiae/genética , Animales , ADN/biosíntesis , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenopus
6.
Nat Commun ; 9(1): 2016, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789535

RESUMEN

Poly (ADP-ribose)ylation is a dynamic protein modification that regulates multiple cellular processes. Here, we describe a system for identifying and characterizing PARylation events that exploits the ability of a PBZ (PAR-binding zinc finger) protein domain to bind PAR with high-affinity. By linking PBZ domains to bimolecular fluorescent complementation biosensors, we developed fluorescent PAR biosensors that allow the detection of temporal and spatial PARylation events in live cells. Exploiting transposon-mediated recombination, we integrate the PAR biosensor en masse into thousands of protein coding genes in living cells. Using these PAR-biosensor "tagged" cells in a genetic screen we carry out a large-scale identification of PARylation targets. This identifies CTIF (CBP80/CBP20-dependent translation initiation factor) as a novel PARylation target of the tankyrase enzymes in the centrosomal region of cells, which plays a role in the distribution of the centrosomal satellites.


Asunto(s)
Técnicas Biosensibles , Factores Eucarióticos de Iniciación/metabolismo , Mitosis , Procesamiento Proteico-Postraduccional , Tanquirasas/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular Tumoral , Centriolos/metabolismo , Centriolos/ultraestructura , Centrosoma/metabolismo , Centrosoma/ultraestructura , Elementos Transponibles de ADN , Células Epiteliales/citología , Células Epiteliales/metabolismo , Factores Eucarióticos de Iniciación/genética , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Pruebas Genéticas , Células HeLa , Humanos , Poli ADP Ribosilación , Poli Adenosina Difosfato Ribosa/metabolismo , Recombinación Genética , Transducción de Señal , Tanquirasas/genética
7.
J Mol Biol ; 347(3): 509-21, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15755447

RESUMEN

The replicative DNA helicases can unwind DNA in the absence of polymerase activity in vitro. In contrast, replicative unwinding is coupled with DNA synthesis in vivo. The temperature-sensitive yeast polymerase alpha/primase mutants cdc17-1, pri2-1 and pri1-m4, which fail to execute the early step of DNA replication, have been used to investigate the interaction between replicative unwinding and DNA synthesis in vivo. We report that some of the plasmid molecules in these mutant strains became extensively negatively supercoiled when DNA synthesis is prevented. In contrast, additional negative supercoiling was not detected during formation of DNA initiation complex or hydroxyurea replication fork arrest. Together, these results indicate that the extensive negative supercoiling of DNA is a result of replicative unwinding, which is not followed by DNA synthesis. The limited number of unwound plasmid molecules and synthetic lethality of polymerase alpha or primase with checkpoint mutants suggest a checkpoint regulation of the replicative unwinding. In concordance with this suggestion, we found that the Tof1/Csm3/Mrc1 checkpoint complex interacts directly with the MCM helicase during both replication fork progression and when the replication fork is stalled.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , ADN Superhelicoidal , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiología , ADN Polimerasa I/metabolismo , ADN Superhelicoidal/biosíntesis , ADN Superhelicoidal/química , ADN Superhelicoidal/metabolismo , Proteínas de Unión al ADN , Hidroxiurea/metabolismo , Sustancias Macromoleculares , Conformación de Ácido Nucleico , Plásmidos/genética , Plásmidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 4: 2101, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23817463

RESUMEN

The essential cis- and trans-acting elements required for RNA splicing have been defined, however, the detailed molecular mechanisms underlying intron-exon recognition are still unclear. Here we demonstrate that the ratio between stability of mRNA/DNA and DNA/DNA duplexes near 3'-spice sites is a characteristic feature that can contribute to intron-exon differentiation. Remarkably, throughout all transcripts, the most unstable mRNA/DNA duplexes, compared with the corresponding DNA/DNA duplexes, are situated upstream of the 3'-splice sites and include the polypyrimidine tracts. This characteristic instability is less pronounced in weak alternative splice sites and disease-associated cryptic 3'-splice sites. Our results suggest that this thermodynamic pattern can prevent the re-annealing of mRNA to the DNA template behind the RNA polymerase to ensure access of the splicing machinery to the polypyrimidine tract and the branch point. In support of this mechanism, we demonstrate that RNA/DNA duplex formation at this region prevents pre-spliceosome A complex assembly.


Asunto(s)
Eucariontes/genética , Exones/genética , Intrones/genética , Empalme Alternativo/genética , Animales , Emparejamiento Base/genética , Secuencia de Bases , Caenorhabditis elegans/genética , ADN/metabolismo , Genoma de los Helmintos/genética , Humanos , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/metabolismo , Nucleótidos/genética , Sitios de Empalme de ARN , Estabilidad del ARN/genética , Empalmosomas/metabolismo , Termodinámica
9.
PLoS One ; 2(3): e290, 2007 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-17356699

RESUMEN

Nucleic acids, due to their structural and chemical properties, can form double-stranded secondary structures that assist the transfer of genetic information and can modulate gene expression. However, the nucleotide sequence alone is insufficient in explaining phenomena like intron-exon recognition during RNA processing. This raises the question whether nucleic acids are endowed with other attributes that can contribute to their biological functions. In this work, we present a calculation of thermodynamic stability of DNA/DNA and mRNA/DNA duplexes across the genomes of four species in the genus Saccharomyces by nearest-neighbor method. The results show that coding regions are more thermodynamically stable than introns, 3'-untranslated regions and intergenic sequences. Furthermore, open reading frames have more stable sense mRNA/DNA duplexes than the potential antisense duplexes, a property that can aid gene discovery. The lower stability of the DNA/DNA and mRNA/DNA duplexes of 3'-untranslated regions and the higher stability of genes correlates with increased mRNA level. These results suggest that the thermodynamic stability of DNA/DNA and mRNA/DNA duplexes affects mRNA transcription.


Asunto(s)
ADN/química , ADN/genética , ARN Mensajero/química , ARN Mensajero/genética , Saccharomyces/genética , Transcripción Genética , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Estabilidad de Medicamentos , Intrones/genética , Sistemas de Lectura Abierta , ARN de Hongos/genética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA