Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(23): e2118697119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35648828

RESUMEN

The blood­brain barrier represents a significant challenge for the treatment of high-grade gliomas, and our understanding of drug transport across this critical biointerface remains limited. To advance preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro models with realistic blood­brain-barrier vasculature. Here, we report a vascularized human glioblastoma multiforme (GBM) model in a microfluidic device that accurately recapitulates brain tumor vasculature with self-assembled endothelial cells, astrocytes, and pericytes to investigate the transport of targeted nanotherapeutics across the blood­brain barrier and into GBM cells. Using modular layer-by-layer assembly, we functionalized the surface of nanoparticles with GBM-targeting motifs to improve trafficking to tumors. We directly compared nanoparticle transport in our in vitro platform with transport across mouse brain capillaries using intravital imaging, validating the ability of the platform to model in vivo blood­brain-barrier transport. We investigated the therapeutic potential of functionalized nanoparticles by encapsulating cisplatin and showed improved efficacy of these GBM-targeted nanoparticles both in vitro and in an in vivo orthotopic xenograft model. Our vascularized GBM model represents a significant biomaterials advance, enabling in-depth investigation of brain tumor vasculature and accelerating the development of targeted nanotherapeutics.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Permeabilidad Capilar , Glioblastoma , Nanopartículas , Animales , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/metabolismo , Células Endoteliales/metabolismo , Glioblastoma/irrigación sanguínea , Glioblastoma/metabolismo , Humanos , Ratones , Microfluídica , Nanopartículas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Angew Chem Int Ed Engl ; 59(7): 2776-2783, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31747099

RESUMEN

Layer-by-layer nanoparticles (NPs) are modular drug delivery vehicles that incorporate multiple functional materials through sequential deposition of polyelectrolytes onto charged nanoparticle cores. Herein, we combined the multicomponent features and tumor targeting capabilities of layer-by-layer assembly with functional biosensing peptides to create a new class of nanotheranostics. These NPs encapsulate a high weight percentage of siRNA while also carrying a synthetic biosensing peptide on the surface that is cleaved into a urinary reporter upon exposure to specific proteases overexpressed in the tumor microenvironment. Importantly, this biosensor reports back on a molecular signature characteristic to metastatic tumors and associated with poor prognosis, MMP9 protease overexpression. This nanotheranostic mediates noninvasive urinary-based diagnostics in mouse models of three different cancers with simultaneous gene silencing in flank and metastatic mouse models of ovarian cancer.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Nanopartículas/química , Neoplasias Ováricas/diagnóstico , Péptidos/química , Nanomedicina Teranóstica , Animales , Técnicas Biosensibles , Neoplasias Colorrectales/genética , Sistemas de Liberación de Medicamentos , Femenino , Silenciador del Gen , Ratones , Neoplasias Ováricas/genética , Péptidos/síntesis química
3.
Bioeng Transl Med ; 9(4): e10636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036092

RESUMEN

Drug-carrying nanoparticles are a promising strategy to deliver therapeutics into the brain, but their translation requires better characterization of interactions between nanomaterials and endothelial cells of the blood-brain barrier (BBB). Here, we use a library of 18 layer-by-layer electrostatically assembled nanoparticles (NPs) to independently assess the impact of NP core and surface materials on in vitro uptake, transport, and intracellular trafficking in brain endothelial cells. We demonstrate that NP core stiffness determines the magnitude of transport, while surface chemistry directs intracellular trafficking. Finally, we demonstrate that these factors similarly dictate in vivo BBB transport using intravital imaging through cranial windows in mice. We identify that hyaluronic acid surface chemistry increases transport across the BBB in vivo, and flow conditions are necessary to replicate this finding in vitro. Taken together, these findings highlight the importance of assay geometry, cell biology, and fluid flow in developing nanocarriers for delivery to the brain.

4.
ACS Nano ; 18(22): 13983-13999, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767983

RESUMEN

In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.


Asunto(s)
Nanomedicina , Humanos , Portadores de Fármacos/química , Liposomas/química , Nanopartículas/química , Estados Unidos
5.
Annu Rev Cancer Biol ; 7: 265-289, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38323268

RESUMEN

The blood-brain barrier is critically important for the treatment of both primary and metastatic cancers of the central nervous system (CNS). Clinical outcomes for patients with primary CNS tumors are poor and have not significantly improved in decades. As treatments for patients with extracranial solid tumors improve, the incidence of CNS metastases is on the rise due to suboptimal CNS exposure of otherwise systemically active agents. Despite state-of-the art surgical care and increasingly precise radiation therapy, clinical progress is limited by the ability to deliver an effective dose of a therapeutic agent to all cancerous cells. Given the tremendous heterogeneity of CNS cancers, both across cancer subtypes and within a single tumor, and the range of diverse therapies under investigation, a nuanced examination of CNS drug exposure is needed. With a shared goal, common vocabulary, and interdisciplinary collaboration, the field is poised for renewed progress in the treatment of CNS cancers.

6.
ACS Nano ; 17(23): 24154-24169, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992211

RESUMEN

Glioblastoma is characterized by diffuse infiltration into surrounding healthy brain tissues, which makes it challenging to treat. Complete surgical resection is often impossible, and systemically delivered drugs cannot achieve adequate tumor exposure to prevent local recurrence. Convection-enhanced delivery (CED) offers a method for administering therapeutics directly into brain tumor tissue, but its impact has been limited by rapid clearance and off-target cellular uptake. Nanoparticle (NP) encapsulation presents a promising strategy for extending the retention time of locally delivered therapies while specifically targeting glioblastoma cells. However, the brain's extracellular structure poses challenges for NP distribution due to its narrow, tortuous pores and a harsh ionic environment. In this study, we investigated the impact of NP surface chemistry using layer-by-layer (LbL) assembly to design drug carriers for broad spatial distribution in brain tissue and specific glioblastoma cell targeting. We found that poly-l-glutamate and hyaluronate were effective surface chemistries for targeting glioblastoma cells in vitro. Coadsorbing either polymer with a small fraction of PEGylated polyelectrolytes improved the colloidal stability without sacrificing cancer cell selectivity. Following CED in vivo, gadolinium-functionalized LbL NPs enabled MRI visualization and exhibited a distribution volume up to three times larger than liposomes and doubled the retention half-time up to 13.5 days. Flow cytometric analysis of CED-treated murine orthotopic brain tumors indicated greater cancer cell uptake and reduced healthy cell uptake for LbL NPs compared to nonfunctionalized liposomes. The distinct cellular outcomes for different colayered LbL NPs provide opportunities to tailor this modular delivery system for various therapeutic applications.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Ratones , Animales , Glioblastoma/patología , Liposomas/metabolismo , Polímeros/metabolismo , Encéfalo/metabolismo , Nanopartículas/química , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral
7.
Science ; 377(6604): eabm5551, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862544

RESUMEN

To accelerate the translation of cancer nanomedicine, we used an integrated genomic approach to improve our understanding of the cellular processes that govern nanoparticle trafficking. We developed a massively parallel screen that leverages barcoded, pooled cancer cell lines annotated with multiomic data to investigate cell association patterns across a nanoparticle library spanning a range of formulations with clinical potential. We identified both materials properties and cell-intrinsic features that mediate nanoparticle-cell association. Using machine learning algorithms, we constructed genomic nanoparticle trafficking networks and identified nanoparticle-specific biomarkers. We validated one such biomarker: gene expression of SLC46A3, which inversely predicts lipid-based nanoparticle uptake in vitro and in vivo. Our work establishes the power of integrated screens for nanoparticle delivery and enables the identification and utilization of biomarkers to rationally design nanoformulations.


Asunto(s)
Antineoplásicos , Biomarcadores Farmacológicos , Proteínas Transportadoras de Cobre , Composición de Medicamentos , Sistema de Administración de Fármacos con Nanopartículas , Nanopartículas , Neoplasias , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Línea Celular Tumoral , Proteínas Transportadoras de Cobre/genética , Expresión Génica , Genómica , Humanos , Liposomas , Ratones , Nanomedicina , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
8.
Pharmaceutics ; 12(10)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036139

RESUMEN

Despite increasing knowledge of the biologic drivers of central nervous system tumors, most targeted agents trialed to date have not shown activity against these tumors in clinical trials. To effectively treat central nervous system tumors, an active drug must achieve and maintain an effective exposure at the tumor site for a long enough period of time to exert its intended effect. However, this is difficult to assess and achieve due to the constraints of drug delivery to the central nervous system. To address this complex problem, an understanding of pharmacokinetic principles is necessary. Pharmacokinetics is classically described as the quantitative study of drug absorption, distribution, metabolism, and elimination. The innate chemical properties of a drug, its administration (dose, route and schedule), and host factors all influence these four key pharmacokinetic phases. The central nervous system adds a level of complexity to standard plasma pharmacokinetics as it is a coupled drug compartment. This review will discuss special considerations of pharmacokinetics in the context of therapeutic development for central nervous system tumors.

10.
J Palliat Med ; 20(5): 494-501, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28051888

RESUMEN

BACKGROUND: Adolescents and early young adults (AYAs) with cancer are at high risk for poor outcomes. Positive psychological responses such as benefit-finding may buffer the negative impacts of cancer but are poorly understood in this population. OBJECTIVE: We aimed to prospectively describe the content and trajectory of benefit- and burden-finding among AYAs to develop potential targets for future intervention. PATIENTS AND METHODS: One-on-one semistructured interviews were conducted with English-speaking AYA patients (aged 14-25 years) within 60 days of diagnosis of a noncentral nervous system malignancy requiring chemotherapy, 6-12 and 12-18 months later. Interviews were coded using directed content analyses with a priori schema defined by existing theoretical frameworks, including changed sense of self, relationships, philosophy of life, and physical well-being. We compared the content, raw counts, and ratios of benefit-to-burden by patient and by time point. SETTING/SUBJECTS: Seventeen participants at one tertiary academic medical center (mean age 17.1 years, SD = 2.7) with sarcoma (n = 8), acute leukemia (n = 6), and lymphoma (n = 3) completed 44 interviews with >100 hours of transcript-data. RESULTS: Average benefit counts were higher than average burden counts at each time point; 68% of interviews had a benefit-to-burden ratio >1. Positive changed sense-of-self was the most common benefit across all time points (44% of all reported benefits); reports of physical distress were the most common burden (32%). Longitudinal analyses suggested perceptions evolved; participants tended to focus less on physical manifestations and more on personal strengths and life purpose. CONCLUSIONS: AYAs with cancer identify more benefits than burdens throughout cancer treatment and demonstrate rapid maturation of perspectives. These findings not only inform communication practices with AYAs but also suggest opportunities for interventions to potentially improve outcomes.


Asunto(s)
Adaptación Psicológica , Neoplasias/psicología , Psicología del Adolescente , Calidad de Vida/psicología , Adolescente , Adulto , Actitud Frente a la Salud , Estudios de Cohortes , Femenino , Humanos , Estudios Longitudinales , Masculino , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA