Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 159(2)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37439468

RESUMEN

The quantum adiabatic method, which maintains populations in their instantaneous eigenstates throughout the state evolution, is an established and often a preferred choice for state preparation and manipulation. Although it minimizes the driving cost significantly, its slow speed is a severe limitation in noisy intermediate-scale quantum era technologies. Since adiabatic paths are extensive in many physical processes, it is of broader interest to achieve adiabaticity at a much faster rate. Shortcuts to adiabaticity techniques, which overcome the slow adiabatic process by driving the system faster through non-adiabatic paths, have seen increased attention recently. The extraordinarily long lifetime of the long-lived singlet states (LLS) in nuclear magnetic resonance (NMR), established over the past decade, has opened several important applications ranging from spectroscopy to biomedical imaging. Various methods, including adiabatic methods, are already being used to prepare LLS. In this article, we report the use of counterdiabatic driving (CD) to speed up LLS preparation with faster drives. Using NMR experiments, we show that CD can give stronger LLS order in shorter durations than conventional adiabatic driving.

2.
Cell Rep ; 15(6): 1190-201, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27134162

RESUMEN

DNA methyltransferase 3a (DNMT3A) catalyzes the formation of 5-methyl-cytosine in mammalian genomic DNA, and it is frequently mutated in human hematologic malignancies. Bi-allelic loss of Dnmt3a in mice results in leukemia and lymphoma, including chronic lymphocytic leukemia (CLL). Here, we investigate whether mono-allelic loss of Dnmt3a is sufficient to induce disease. We show that, by 16 months of age, 65% of Dnmt3a(+/-) mice develop a CLL-like disease, and 15% of mice develop non-malignant myeloproliferation. Genome-wide methylation analysis reveals that reduced Dnmt3a levels induce promoter hypomethylation at similar loci in Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL, suggesting that promoters are particularly sensitive to Dnmt3a levels. Gene expression analysis identified 26 hypomethylated and overexpressed genes common to both Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL as putative oncogenic drivers. Our data provide evidence that Dnmt3a is a haplo-insufficient tumor suppressor in CLL and highlights the importance of deregulated molecular events in disease pathogenesis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Regulación Leucémica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/genética , Regiones Promotoras Genéticas , Animales , Proliferación Celular , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN Metiltransferasa 3A , Heterocigoto , Humanos , Ratones , Transcripción Genética , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA