Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cephalalgia ; 42(13): 1397-1408, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35787157

RESUMEN

OBJECTIVE: Telemedicine is defined as video-based consultations with synchronous video and sound. This systematic review investigated the use of telemedicine for headache patients. The primary outcomes of interest were treatment efficacy, feasibility, safety, convenience, compliance, and patient satisfaction. METHODS: A systematic literature search was performed using PubMed and Embase. Thirteen articles met the eligibility criteria and were included in the review. A systematic review protocol was registered on the International Prospective Register of Systematic Reviews, registration number CRD42021265875. RESULTS: There were no significant differences in treatment efficacy, patient satisfaction, compliance or safety using telemedicine when compared to traditional consultations. Telemedicine was found to be convenient due to being less time-consuming and expensive, especially for patients with limited access to health care. Despite the frequent occurrence of technical errors, telemedicine was found to be feasible. CONCLUSION: Telemedicine consultations are similar in quality to traditional in-office headache consultations and can be a more convenient solution for eligible headache patients.


Asunto(s)
Telemedicina , Humanos , Cefalea/diagnóstico , Cefalea/terapia , Satisfacción del Paciente , Derivación y Consulta , Telemedicina/métodos
2.
Theor Appl Genet ; 133(11): 3119-3137, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32803378

RESUMEN

KEY MESSAGE: Quantitation of leaf surface wax on a population of switchgrass identified three significant QTL present across six environments that contribute to leaf glaucousness and wax composition and that show complex genetic × environmental (G × E) interactions. The C4 perennial grass Panicum virgatum (switchgrass) is a native species of the North American tallgrass prairie. This adaptable plant can be grown on marginal lands and is useful for soil and water conservation, biomass production, and as a forage. Two major switchgrass ecotypes, lowland and upland, differ in a range of desirable traits, and the responsible underlying loci can be localized efficiently in a pseudotestcross design. An outbred four-way cross (4WCR) mapping population of 750 F2 lines was used to examine the genetic basis of differences in leaf surface wax load between two lowland (AP13 and WBC) and two upland (DAC and VS16) tetraploid cultivars. The objective of our experiments was to identify wax compositional variation among the population founders and to map underlying loci responsible for surface wax variation across environments. GCMS analyses of surface wax extracted from 4WCR F0 founders and F1 hybrids reveal higher levels of wax in lowland genotypes and show quantitative differences of ß-diketones, primary alcohols, and other wax constituents. The full mapping population was sampled over two seasons from four field sites with latitudes ranging from 30 to 42 °N, and leaf surface wax was measured. We identified three high-confidence QTL, of which two displayed significant G × E effects. Over 50 candidate genes underlying the QTL regions showed similarity to genes in either Arabidopsis or barley known to function in wax synthesis, modification, regulation, and transport.


Asunto(s)
Interacción Gen-Ambiente , Panicum/genética , Hojas de la Planta/química , Sitios de Carácter Cuantitativo , Ceras , Mapeo Cromosómico , Cruzamientos Genéticos , Ecotipo , Ligamiento Genético , Genotipo , Panicum/química , Fenotipo , Tetraploidía
3.
Plant J ; 92(6): 1059-1075, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29030891

RESUMEN

Switchgrass (Panicum virgatum), a perennial, polyploid, C4 warm-season grass is among the foremost herbaceous species being advanced as a source of biomass for biofuel end uses. At the end of every growing season, the aerial tissues senesce, and the below-ground rhizomes become dormant. Future growth is dependent on the successful over-wintering of the rhizomes. Although the importance of rhizome health to overall year-upon-year plant productivity has been long recognized, there is limited information on seasonal changes occurring during dormancy at both the transcriptome and metabolite levels. Here, global changes in transcriptomes and metabolites were investigated over two growing seasons in rhizomes harvested from field-grown plants. The objectives were: (a) synthesize information on cellular processes that lead to dormancy; and (b) provide models that could account for major metabolic pathways present in dormant switchgrass rhizomes. Overall, metabolism during dormancy appeared to involve discrete but interrelated events. One was a response to abscisic acid that resulted in dehydration, increases in osmolytes and upregulation of autophagic processes, likely through the target of rapamycin complex and sucrose non-fermentative-related kinase-based signaling cascades. Another was a recalibration of energy transduction through apparent reductions in mitochondrial oxidative phosphorylation, increases in substrate level generation of ATP and reducing equivalents, and recycling of N and possibly CO2 through refixation. Lastly, transcript abundances indicated that cold-related signaling was also occurring. Altogether, these data provide a detailed overview of rhizome metabolism, especially during dormancy, which can be exploited in the future to improve winter survival in switchgrass.


Asunto(s)
Ácido Abscísico/metabolismo , Panicum/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Rizoma/genética , Transcriptoma , Biocombustibles , Biomasa , Mapeo Cromosómico , Panicum/crecimiento & desarrollo , Panicum/metabolismo , Poliploidía , Rizoma/crecimiento & desarrollo , Rizoma/metabolismo , Estaciones del Año , Análisis de Secuencia de ARN
4.
Plant Mol Biol ; 96(3): 305-314, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29322303

RESUMEN

KEY MESSAGE: We studied the salt stress tolerance of two accessions isolated from different areas of the world (Norway and Tunisia) and characterized the mechanism(s) regulating salt stress in Brachypodium sylvaticum Osl1 and Ain1. Perennial grasses are widely grown in different parts of the world as an important feedstock for renewable energy. Their perennial nature that reduces management practices and use of energy and agrochemicals give these biomass crops advantages when dealing with modern agriculture challenges such as soil erosion, increase in salinized marginal lands and the runoff of nutrients. Brachypodium sylvaticum is a perennial grass that was recently suggested as a suitable model for the study of biomass plant production and renewable energy. However, its plasticity to abiotic stress is not yet clear. We studied the salt stress tolerance of two accessions isolated from different areas of the world and characterized the mechanism(s) regulating salt stress in B. sylvaticum Osl1, originated from Oslo, Norway and Ain1, originated from Ain-Durham, Tunisia. Osl1 limited sodium transport from root to shoot, maintaining a better K/Na homeostasis and preventing toxicity damage in the shoot. This was accompanied by higher expression of HKT8 and SOS1 transporters in Osl1 as compared to Ain1. In addition, Osl1 salt tolerance was accompanied by higher abundance of the vacuolar proton pump pyrophosphatase and Na+/H+ antiporters (NHXs) leading to a better vacuolar pH homeostasis, efficient compartmentation of Na+ in the root vacuoles and salt tolerance. Although preliminary, our results further support previous results highlighting the role of Na+ transport systems in plant salt tolerance. The identification of salt tolerant and sensitive B. sylvaticum accessions can provide an experimental system for the study of the mechanisms and regulatory networks associated with stress tolerance in perennials grass.


Asunto(s)
Brachypodium/fisiología , Tolerancia a la Sal/efectos de los fármacos , Cloruro de Sodio/farmacología , Brachypodium/clasificación , Brachypodium/efectos de los fármacos , Plantas Tolerantes a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/fisiología , Estrés Fisiológico/efectos de los fármacos
5.
BMC Plant Biol ; 18(1): 142, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986667

RESUMEN

BACKGROUND: Switchgrass breeders need to improve the rates of genetic gain in many bioenergy-related traits in order to create improved cultivars that are higher yielding and have optimal biomass composition. One way to achieve this is through genomic selection. However, the heritability of traits needs to be determined as well as the accuracy of prediction in order to determine if efficient selection is possible. RESULTS: Using five distinct switchgrass populations comprised of three lowland, one upland and one hybrid accession, the accuracy of genomic predictions under different cross-validation strategies and prediction methods was investigated. Individual genotypes were collected using GBS while kin-BLUP, partial least squares, sparse partial least squares, and BayesB methods were employed to predict yield, morphological, and NIRS-based compositional data collected in 2012-2013 from a replicated Nebraska field trial. Population structure was assessed by F statistics which ranged from 0.3952 between lowland and upland accessions to 0.0131 among the lowland accessions. Prediction accuracy ranged from 0.57-0.52 for cell wall soluble glucose and fructose respectively, to insignificant for traits with low repeatability. Ratios of heritability across to within-population ranged from 15 to 0.6. CONCLUSIONS: Accuracy was significantly affected by both cross-validation strategy and trait. Accounting for population structure with a cross-validation strategy constrained by accession resulted in accuracies that were 69% lower than apparent accuracies using unconstrained cross-validation. Less accurate genomic selection is anticipated when most of the phenotypic variation exists between populations such as with spring regreening and yield phenotypes.


Asunto(s)
Metabolismo Energético/genética , Panicum/genética , Carácter Cuantitativo Heredable , Estudios de Asociación Genética , Genética de Población , Genoma de Planta/genética , Genotipo , Panicum/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Alineación de Secuencia , Espectroscopía Infrarroja Corta
6.
BMC Genomics ; 17(1): 892, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27821048

RESUMEN

BACKGROUND: Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. RESULTS: In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from 'Alamo', a rust-resistant switchgrass cultivar, and 'Dacotah', a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar 'Summer' plants indicated that the expression of some of these RGHs was developmentally regulated. CONCLUSIONS: Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop.


Asunto(s)
Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Genes de Plantas , Estudios de Asociación Genética , Panicum/genética , Alelos , Secuencia de Aminoácidos , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Predisposición Genética a la Enfermedad , Genoma de Planta , Genómica/métodos , Panicum/clasificación , Filogenia , Polimorfismo de Nucleótido Simple , Posición Específica de Matrices de Puntuación , Dominios y Motivos de Interacción de Proteínas/genética , Reproducibilidad de los Resultados
7.
Brief Bioinform ; 15(6): 1044-56, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24177379

RESUMEN

As a group of economically important species, linkage mapping of polysomic autotetraploids, including potato, sugarcane and rose, is difficult to conduct due to their unique meiotic property of double reduction that allows sister chromatids to enter into the same gamete. We describe and assess a statistical model for mapping quantitative trait loci (QTLs) in polysomic autotetraploids. The model incorporates double reduction, built in the mixture model-based framework and implemented with the expectation-maximization algorithm. It allows the simultaneous estimation of QTL positions, QTL effects and the degree of double reduction as well as the assessment of the estimation precision of these parameters. We performed computer simulation to examine the statistical properties of the method and validate its use through analyzing real data in tetraploid switchgrass.


Asunto(s)
Mapeo Cromosómico/estadística & datos numéricos , Modelos Genéticos , Sitios de Carácter Cuantitativo , Tetraploidía , Algoritmos , Biología Computacional , Simulación por Computador , Funciones de Verosimilitud , Modelos Estadísticos , Método de Montecarlo , Panicum/genética , Plantas/genética , Polirribosomas/genética
8.
Funct Integr Genomics ; 15(1): 1-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25173486

RESUMEN

Switchgrass flag leaves can be expected to be a source of carbon to the plant, and its senescence is likely to impact the remobilization of nutrients from the shoots to the rhizomes. However, many genes have not been assigned a function in specific stages of leaf development. Here, we characterized gene expression in flag leaves over their development. By merging changes in leaf chlorophyll and the expression of genes for chlorophyll biosynthesis and degradation, a four-phase molecular roadmap for switchgrass flag leaf ontogeny was developed. Genes associated with early leaf development were up-regulated in phase 1. Phase 2 leaves had increased expression of genes for chlorophyll biosynthesis and those needed for full leaf function. Phase 3 coincided with the most active phase for leaf C and N assimilation. Phase 4 was associated with the onset of senescence, as observed by declining leaf chlorophyll content, a significant up-regulation in transcripts coding for enzymes involved with chlorophyll degradation, and in a large number of senescence-associated genes. Of considerable interest were switchgrass NAC transcription factors with significantly higher expression in senescing flag leaves. Two of these transcription factors were closely related to a wheat NAC gene that impacts mineral remobilization. The third switchgrass NAC factor was orthologous to an Arabidopsis gene with a known role in leaf senescence. Other genes coding for nitrogen and mineral utilization, including ureide, ammonium, nitrate, and molybdenum transporters, shared expression profiles that were significantly co-regulated with the expression profiles of the three NAC transcription factors. These data provide a good starting point to link shoot senescence to the onset of dormancy in field-grown switchgrass.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Minerales/metabolismo , Panicum/crecimiento & desarrollo , Panicum/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Transcriptoma/genética , Secuencia de Aminoácidos , Ácido Ascórbico/metabolismo , Transporte Biológico , Carbono/metabolismo , Análisis por Conglomerados , Epigénesis Genética , Perfilación de la Expresión Génica , Genes de Plantas , Glutatión/metabolismo , Histonas/metabolismo , Metabolismo de los Lípidos/genética , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Estaciones del Año , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
9.
Brief Bioinform ; 14(1): 96-108, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22508791

RESUMEN

An allotetraploid has four paired sets of chromosomes derived from different diploid species, whose meiotic behavior is qualitatively different from the underlying diploids. According to a traditional view, meiotic pairing occurs only between homologous chromosomes, but new evidence indicates that homoeologous chromosomes may also pair to a lesser extent compared with homolog pairing. Here, we describe and assess a unifying analytical framework that incorporates differential chromosomal pairing into a multilocus linkage model. The preferential pairing factor is used to quantify the probability difference of pairing occurring between homologous chromosomes and homoeologous chromosomes. The unifying framework allows simultaneous estimation of the linkage, genetic interference and preferential pairing factor using commonly existing multiplex markers. We compared the unifying approach and traditional approaches assuming random chromosomal pairing by analyzing marker data collected in a full-sib family of tetraploid switchgrass, a bioenergy species whose diploid origins are undefined, but with subgenomes that are genetically well differentiated. The unifying framework provides a better tool for estimating the meiotic linkage and constructing a genetic map for allotetraploids.


Asunto(s)
Ligamiento Genético , Plantas/genética , Tetraploidía , Mapeo Cromosómico/estadística & datos numéricos , Emparejamiento Cromosómico , Segregación Cromosómica , Biología Computacional , Simulación por Computador , Funciones de Verosimilitud , Meiosis/genética , Modelos Genéticos
10.
Brief Bioinform ; 14(4): 460-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22988254

RESUMEN

Because of its widespread occurrence and role in shaping evolutionary processes in the biological kingdom, especially in plants, polyploidy has been increasingly studied from cytological to molecular levels. By inferring gene order, gene distances and gene homology, linkage mapping with molecular markers has proven powerful for investigating genome structure and organization. Here we review and assess a general statistical model for three-point linkage analysis in autotetraploids by integrating double reduction, a phenomenon that commonly occurs in autopolyploids whose chromosomes are derived from a single ancestral species. This model does not require any assumption on the distribution of the occurrence of double reduction and can handle the complexity of multilocus linkage in terms of crossover interference. Implemented with the expectation-maximization (EM) algorithms, the model can estimate and test the recombination fractions between less informative dominant markers, thus facilitating its practical implications for any autopolyploids in most of which inexpensive dominant markers are still used for their genetic and evolutionary studies. The model was applied to reanalyze a published data in tetraploid switchgrass, validating its practical usefulness and utilization.


Asunto(s)
Ligamiento Genético , Modelos Genéticos , Poliploidía , Mapeo Cromosómico , Marcadores Genéticos , Modelos Estadísticos
11.
Proc Natl Acad Sci U S A ; 108(42): 17550-5, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21987797

RESUMEN

Biofuels developed from biomass crops have the potential to supply a significant portion of our transportation fuel needs. To achieve this potential, however, it will be necessary to develop improved plant germplasm specifically tailored to serve as energy crops. Liquid transportation fuel can be created from the sugars locked inside plant cell walls. Unfortunately, these sugars are inherently resistant to hydrolytic release because they are contained in polysaccharides embedded in lignin. Overcoming this obstacle is a major objective toward developing sustainable bioenergy crop plants. The maize Corngrass1 (Cg1) gene encodes a microRNA that promotes juvenile cell wall identities and morphology. To test the hypothesis that juvenile biomass has superior qualities as a potential biofuel feedstock, the Cg1 gene was transferred into several other plants, including the bioenergy crop Panicum virgatum (switchgrass). Such plants were found to have up to 250% more starch, resulting in higher glucose release from saccharification assays with or without biomass pretreatment. In addition, a complete inhibition of flowering was observed in both greenhouse and field grown plants. These results point to the potential utility of this approach, both for the domestication of new biofuel crops, and for the limitation of transgene flow into native plant species.


Asunto(s)
MicroARNs/genética , Panicum/genética , ARN de Planta/genética , Zea mays/genética , Secuencia de Bases , Biocombustibles , Biomarcadores , Flores/crecimiento & desarrollo , Expresión Génica , Genes de Plantas , Panicum/crecimiento & desarrollo , Panicum/metabolismo , Plantas Modificadas Genéticamente , Almidón/metabolismo
12.
Life (Basel) ; 14(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38792565

RESUMEN

Traumatic brain injury (TBI) stands as a prominent global cause of disability, with motor deficits being a common consequence. Despite its widespread impact, the precise pathological mechanisms underlying motor deficits after TBI remain elusive. In this study, hindlimb postural asymmetry (HL-PA) development in rats subjected to focal TBI was investigated to explore the potential roles of collagen IV and laminin within the extracellular matrix (ECM) of selected hindlimb muscles in the emergence of motor deficits following TBI. A focal TBI was induced by ablating the left sensorimotor cortex in rats and motor deficits were assessed by measuring HL-PA. The expression of laminin and collagen IV in eight selected muscles on each side of the hindlimbs from both TBI- and sham-operated rats were studied using immunohistochemistry and semi-quantitatively analyzed. The results indicated that the TBI rats exhibited HL-PA, characterized by flexion of the contralateral (right) hindlimb. In the sham-operated rats, the immunoreactive components of laminin and collagen IV were evenly and smoothly distributed along the border of the muscle fibers in all the investigated muscles. In contrast, in the TBI rats, the pattern was broken into aggregated, granule-like, immunoreactive components. Such a labeling pattern was detected in all the investigated muscles both from the contra- and ipsilateral sides of the TBI rats. However, in TBI rats, most of the muscles from the contralateral hindlimb showed a significantly increased expression of these two proteins in comparison with those from the ipsilateral hindlimb. In comparison to sham-operated rats, there was a significant increase in laminin and collagen IV expression in various contralateral hindlimb muscles in the TBI rats. These findings suggest potential implications of laminin and collagen IV in the development of motor deficits following a focal TBI.

13.
Plant Genome ; 16(2): e20209, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35470589

RESUMEN

Cross bred species such as switchgrass may benefit from advantageous breeding strategies requiring inbred lines. Doubled haploid production methods offer several ways that these lines can be produced that often involve uniparental genome elimination as the rate limiting step. We have used a centromere-mediated genome elimination strategy in which modified CENH3 is expressed to induce the process. Transgenic tetraploid switchgrass lines coexpressed Cas9, a poly-cistronic tRNA-gRNA tandem array containing eight guide RNAs that target two CENH3 genes, and different chimeric versions of CENH3 with alterations to the N-terminal tail region. Genotyping of CENH3 genes in transgenics identified edits including frameshift mutations and deletions in one or both copies of the two CENH3 genes. Flow cytometry of T1 seedlings identified two T0 lines that produced five haploid individuals representing an induction rate of 0.5% and 1.4%. Eight different T0 lines produced aneuploids at rates ranging from 2.1 to 14.6%. A sample of aneuploid lines were sequenced at low coverage and aligned to the reference genome, revealing missing chromosomes and chromosome arms.


Asunto(s)
Panicum , Haploidia , Histonas/genética , Fitomejoramiento , Aneuploidia
14.
G3 (Bethesda) ; 13(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36947434

RESUMEN

Switchgrass can be used as an alternative source for bioenergy production. Many breeding programs focus on the genetic improvement of switchgrass for increasing biomass yield. Quantitative trait loci (QTL) mapping can help to discover marker-trait associations and accelerate the breeding process through marker-assisted selection. To identify significant QTL, this study mapped 7 hybrid populations and one combined of 2 hybrid populations (30-96 F1s) derived from Alamo and Kanlow genotypes. The populations were evaluated for biomass yield, plant height, and crown size in a simulated-sward plot with 2 replications at 2 locations in Tennessee from 2019 to 2021. The populations showed significant genetic variation for the evaluated traits and exhibited transgressive segregation. The 17,251 single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) were used to construct a linkage map using a fast algorithm for multiple outbred families. The linkage map spanned 1,941 cM with an average interval of 0.11 cM between SNPs. The QTL analysis was performed on evaluated traits for each and across environments (year and location) that identified 5 QTL for biomass yield (logarithm of the odds, LOD 3.12-4.34), 4 QTL for plant height (LOD 3.01-5.64), and 7 QTL for crown size (LOD 3.0-4.46) (P ≤ 0.05). The major QTL for biomass yield, plant height, and crown size resided on chromosomes 8N, 6N, and 8K explained phenotypic variations of 5.6, 5.1, and 6.6%, respectively. SNPs linked to QTL could be incorporated into marker-assisted breeding to maximize the selection gain in switchgrass breeding.


Asunto(s)
Panicum , Sitios de Carácter Cuantitativo , Humanos , Panicum/genética , Biomasa , Ligamiento Genético , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
15.
Plants (Basel) ; 12(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111955

RESUMEN

High-biomass-yielding southerly adapted switchgrasses (Panicum virgatum L.) frequently suffer from unpredictable winter hardiness at more northerly sites arising from damage to rhizomes that prevent effective spring regrowth. Previously, changes occurring over the growing season in rhizomes sampled from a cold-adapted tetraploid upland cultivar, Summer, demonstrated a role for abscisic acid (ABA), starch accumulation, and transcriptional reprogramming as drivers of dormancy onset and potential keys to rhizome health during winter dormancy. Here, rhizome metabolism of a high-yielding southerly adapted tetraploid switchgrass cultivar, Kanlow-which is a significant source of genetics for yield improvement-was studied over a growing season at a northern site. Metabolite levels and transcript abundances were combined to develop physiological profiles accompanying greening through the onset of dormancy in Kanlow rhizomes. Next, comparisons of the data to rhizome metabolism occurring in the adapted upland cultivar Summer were performed. These data revealed both similarities as well as numerous differences in rhizome metabolism that were indicative of physiological adaptations unique to each cultivar. Similarities included elevated ABA levels and accumulation of starch in rhizomes during dormancy onset. Notable differences were observed in the accumulation of specific metabolites, the expression of genes encoding transcription factors, and several enzymes linked to primary metabolism.

16.
BMC Plant Biol ; 12: 117, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22834676

RESUMEN

BACKGROUND: Karyotypes can provide information about taxonomic relationships, genetic aberrations, and the evolutionary origins of species. However, differentiation of the tiny chromosomes of switchgrass (Panicum virgatum L.) and creation of a standard karyotype for this bioenergy crop has not been accomplished due to lack of distinguishing features and polyploidy. RESULTS: A cytogenetic study was conducted on a dihaploid individual (2n = 2X = 18) of switchgrass to establish a chromosome karyotype. Size differences, condensation patterns, and arm-length ratios were used as identifying features and fluorescence in-situ hybridization (FISH) assigned 5S and 45S rDNA loci to chromosomes 7 and 2 respectively. Both a maize CentC and a native switchgrass centromeric repeat (PviCentC) that shared 73% sequence identity demonstrated a strong signal on chromosome 3. However, only the PviCentC probe labeled the centromeres of all chromosomes. Unexpected PviCentC and 5S rDNA hybidization patterns were consistent with severe reduction or total deletion of these repeats in one subgenome. These patterns were maintained in tetraploid and octoploid individuals. The 45S rDNA repeat produced the expected number of loci in dihaploid, tetraploid and octoploid individuals. Differences observed at the 5S rDNA loci between the upland and lowland ecotypes of switchgrass provided a basis for distinguishing these subpopulations. CONCLUSION: Collectively, these results provide a quantitative karyotype of switchgrass chromosomes. FISH analyses indicate genetic divergence between subgenomes and allow for the classification of switchgrass plants belonging to divergent genetic pools. Furthermore, the karyotype structure and cytogenetic analysis of switchgrass provides a framework for future genetic and genomic studies.


Asunto(s)
Ecotipo , Variación Genética , Genoma de Planta , Cariotipo , Poaceae/genética , Centrómero/genética , Deleción Cromosómica , Cromosomas de las Plantas/genética , ADN de Plantas/genética , ADN Ribosómico/genética , Sitios Genéticos , Hibridación Fluorescente in Situ , Cariotipificación , Poaceae/fisiología , Poliploidía , ARN Ribosómico/genética , ARN Ribosómico 5S/genética , Secuencias Repetitivas de Ácidos Nucleicos , Especificidad de la Especie
17.
Toxicol Pathol ; 40(7): 1031-48, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22581810

RESUMEN

Novel urinary protein biomarkers for the detection of acute renal damage, recently accepted by the U.S. Food and Drug Administration, European Medicines Agency, and Pharmaceuticals and Medical Devices Agency (Japan), now have to be validated in practice. Limited data regarding the performance of these acute markers after subacute or subchronic treatment are publicly available. To increase the area of applicability of these markers, it is important to evaluate the ability to detect them after 28 days of treatment or even longer. Wistar rats were treated with three doses of cisplatin, vancomycin, or puromycin to induce renal damage. Twelve candidate proteins were measured by Luminex xMAP-based WideScreen assays, MesoScale Discovery-based MULTI-SPOT technology, or RENA-strip dipstick assay after 28 days. Treatment with all three model compounds resulted in a dose-dependent increase in urinary biomarkers, specific for the observed areas within the nephron, determined histopathologically. The most promising biomarkers in this study were NGAL, Kim-1, osteopontin, clusterin, RPA-1, and GSTYb1, detected by multiplexing technologies. The RENA-strip dipstick assay delivered good diagnostic results for vancomycin-treated but not for cisplatin- or puromycin-treated rats. Taken together, the data show that these new biomarkers are robust and measurable for longer term studies to predict different types of kidney toxicities.


Asunto(s)
Biomarcadores/orina , Evaluación Preclínica de Medicamentos , Enfermedades Renales/inducido químicamente , Pruebas de Toxicidad Subaguda/métodos , Xenobióticos/toxicidad , Enfermedad Aguda , Animales , Antibacterianos/toxicidad , Antimetabolitos Antineoplásicos/toxicidad , Cisplatino/toxicidad , Relación Dosis-Respuesta a Droga , Femenino , Enfermedades Renales/patología , Enfermedades Renales/orina , Masculino , Puromicina/toxicidad , Ratas , Ratas Wistar , Vancomicina/toxicidad
18.
Genome ; 53(1): 1-13, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20130744

RESUMEN

The grass species Brachypodium distachyon (hereafter, Brachypodium) has been adopted as a model system for grasses. Here, we describe the development of a genetic linkage map of Brachypodium. The genetic linkage map was developed with an F2 population from a cross between the diploid Brachypodium lines Bd3-1 and Bd21. The map was populated with polymorphic simple sequence repeat (SSR) markers from Brachypodium expressed sequence tag (EST) and bacterial artificial chromosome (BAC) end sequences and conserved orthologous sequence (COS) markers from other grass species. The map is 1386 cM in length and consists of 139 marker loci distributed across 20 linkage groups. Five of the linkage groups exceed 100 cM in length, with the largest being 231 cM long. Assessment of colinearity between the Brachypodium linkage map and the rice genome sequence revealed significant regions of macrosynteny between the two genomes, as well as rearrangements similar to those reported in other grass comparative structural genomics studies. The Brachypodium genetic linkage map described here will serve as a new tool to pursue a range of molecular genetic analyses and other applications in this new model plant system.


Asunto(s)
Mapeo Cromosómico/métodos , Repeticiones de Microsatélite/genética , Modelos Teóricos , Poaceae/genética , Secuencia de Bases , Cromosomas de las Plantas , Análisis por Conglomerados , Genes de Plantas , Modelos Biológicos , Alineación de Secuencia , Análisis de Secuencia de ADN
19.
Plants (Basel) ; 9(5)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438618

RESUMEN

Camelina sativa (L.) Crntz. is a hardy self-pollinated oilseed plant that belongs to the Brassicaceae family; widely grown throughout the northern hemisphere until the 1940s for production of vegetable oil but was later displaced by higher-yielding rapeseed and sunflower crops. However, interest in camelina as an alternative oil source has been renewed due to its high oil content that is rich in polyunsaturated fatty acids, antioxidants as well as its ability to grow on marginal lands with minimal requirements. For this reason, our group decided to screen the existing (2011) National Genetic Resources Program (NGRP) center collection of camelina for its genetic diversity and provide a phenotypic evaluation of the cultivars available. Properties evaluated include seed and oil traits, developmental and mature morphologies, as well as chromosome content. Selectable marker genes were also evaluated for potential use in biotech manipulation. Data is provided in a raw uncompiled format to allow other researchers to analyze the unbiased information for their own studies. Our evaluation has determined that the NGRP collection has a wide range of genetic potential for both breeding and biotechnological manipulation purposes. Accessions were identified within the NGRP collection that appear to have desirable seed harvest weight (5.06 g/plant) and oil content (44.1%). Other cultivars were identified as having fatty acid characteristics that may be suitable for meal and/or food use, such as low (<2%) erucic acid content, which is often considered for healthy consumption and ranged from a high of 4.79% to a low of 1.83%. Descriptive statistics are provided for a breadth of traits from 41 accessions, as well as raw data, and key seed traits are further explored. Data presented is available for public use.

20.
Dev Cell ; 47(2): 205-221.e7, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30352176

RESUMEN

Lipid metabolism is highly compartmentalized between cellular organelles that dynamically adapt their compositions and interactions in response to metabolic challenges. Here, we investigate how diet-induced hepatic lipid accumulation, observed in non-alcoholic fatty liver disease (NAFLD), affects protein localization, organelle organization, and protein phosphorylation in vivo. We develop a mass spectrometric workflow for protein and phosphopeptide correlation profiling to monitor levels and cellular distributions of ∼6,000 liver proteins and ∼16,000 phosphopeptides during development of steatosis. Several organelle contact site proteins are targeted to lipid droplets (LDs) in steatotic liver, tethering organelles orchestrating lipid metabolism. Proteins of the secretory pathway dramatically redistribute, including the mis-localization of the COPI complex and sequestration of the Golgi apparatus at LDs. This correlates with reduced hepatic protein secretion. Our systematic in vivo analysis of subcellular rearrangements and organelle-specific phosphorylation reveals how nutrient overload leads to organellar reorganization and cellular dysfunction.


Asunto(s)
Hígado Graso/fisiopatología , Gotas Lipídicas/fisiología , Orgánulos/fisiología , Animales , Dieta , Dieta Alta en Grasa , Aparato de Golgi/fisiología , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Lípidos/fisiología , Hígado , Espectrometría de Masas/métodos , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales , Nutrientes/metabolismo , Orgánulos/efectos de los fármacos , Fosforilación , Transporte de Proteínas , Proteómica/métodos , Vías Secretoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA