Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biochem Biophys Res Commun ; 736: 150510, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121671

RESUMEN

Hibernating animals undergo a unique and reversible decrease in their whole-body metabolism, which is often accompanied by a suppression of mitochondrial respiration. However, the precise mechanisms underlying these seasonal shifts in mitochondrial metabolism remain unclear. In this study, the effect of the serum from active and hibernating Japanese black bears on mitochondrial respiration was assessed. Stromal-vascular cells were obtained from bear white adipose tissue and cultured with or without an adipocyte differentiation cocktail. When the oxygen consumption was measured in the presence of bear serum, the hibernating bear serum reduced maximal respiration by 15.5 % (p < 0.05) and spare respiratory capacity by 46.0 % (p < 0.01) in the differentiated adipocytes in comparison to the active bear serum. Similar reductions of 23.4 % (p = 0.06) and 40.6 % (p < 0.05) respectively were observed in undifferentiated cells, indicating the effect is cell type-independent. Blue native PAGE analysis revealed that hibernating bear serum suppressed cellular metabolism independently of the assembly of mitochondrial respiratory chain complexes. RNA-seq analysis identified 1094 differentially expressed genes (fold change>1.5, FDR<0.05) related to insulin signaling and glucose metabolism pathways. These findings suggest that the rapid alterations in mitochondrial metabolism during hibernation are likely induced by a combination of reduced insulin signaling and suppressed mitochondrial function, rather than changes in respiratory complex assembly.

2.
FASEB J ; 33(4): 5196-5207, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30624970

RESUMEN

Bone marrow provides progenitors of several types of cells, including muscle and white adipocytes, ensuring peripheral tissue homeostasis. However, the role of bone marrow-derived cells (BMCs) in induction of thermogenic adipocytes is unresolved. The purpose of this study is to examine whether BMCs are involved in the emergence of thermogenic adipocytes through adrenergic activation. Irradiation of mice with 8 Gy of X-ray-depleted BMCs and peripheral blood mononucleated cells (PBMCs), which in turn impaired induction of uncoupling protein 1 (UCP1) through administration of ß3 adrenergic receptor agonist, CL 316,243 (CL), in inguinal white adipose tissue (iWAT). In contrast, CL-induced UCP1 induction in brown adipose tissue was unaffected by BMC depletion. Transplantation of normal BMCs into mice depleted of BMCs recovered PBMC levels and rescued the ability of iWAT browning by CL. Furthermore, analyses of mice transplanted with green fluorescent protein (GFP)-labeled BMCs revealed that the number of GFP-positive BMCs and PBMCs were significantly decreased by CL and that GFP-positive stromal cells and GFP-positive UCP1-expressing multilocular adipocytes appeared in iWAT after CL administration, demonstrating differentiation of BMC-derived preadipocytes into UCP1-expressing thermogenic adipocytes. These results unveiled a crucial role of the BMC as a nonresident origin for a subset of thermogenic adipocytes, contributing to browning of white adipose tissue.-Yoneshiro, T., Shin, W., Machida, K., Fukano, K., Tsubota, A., Chen, Y., Yasui, H., Inanami, O., Okamatsu-Ogura, Y., Kimura, K. Differentiation of bone marrow-derived cells toward thermogenic adipocytes in white adipose tissue induced by the ß3 adrenergic stimulation.


Asunto(s)
Adipocitos/citología , Tejido Adiposo Blanco/citología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Receptores Adrenérgicos beta 3/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Animales , Western Blotting , Trasplante de Médula Ósea , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Desacopladora 1/metabolismo
3.
Front Cell Dev Biol ; 9: 698692, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34291052

RESUMEN

Brown adipose tissue (BAT) is a specialized tissue that regulates non-shivering thermogenesis. In Syrian hamsters, interscapular adipose tissue is composed primarily of white adipocytes at birth, which is converted to BAT through the proliferation and differentiation of brown adipocyte progenitors and the simultaneous disappearance of white adipocytes. In this study, we investigated the regulatory mechanism of brown adipogenesis during postnatal BAT formation in hamsters. Interscapular adipose tissue of a 10-day-old hamster, which primarily consists of brown adipocyte progenitors and white adipocytes, was digested with collagenase and fractioned into stromal-vascular (SV) cells and white adipocytes. SV cells spontaneously differentiated into brown adipocytes that contained multilocular lipid droplets and expressed uncoupling protein 1 (Ucp1), a marker of brown adipocytes, without treatment of adipogenic cocktail such as dexamethasone and insulin. The spontaneous differentiation of SV cells was suppressed by co-culture with adipocytes or by the addition of white adipocyte-conditioned medium. Conversely, the addition of SV cell-conditioned medium increased the expression of Ucp1. These results indicate that adipocytes secrete factors that suppress brown adipogenesis, whereas SV cells secrete factors that promote brown adipogenesis. Transcriptome analysis was conducted; however, no candidate suppressing factors secreted from adipocytes were identified. In contrast, 19 genes that encode secretory factors, including bone morphogenetic protein (BMP) family members, BMP3B, BMP5, and BMP7, were highly expressed in SV cells compared with adipocytes. Furthermore, the SMAD and MAPK signaling pathways, which represent the major BMP signaling pathways, were activated in SV cells, suggesting that BMPs secreted from SV cells induce brown adipogenesis in an autocrine manner through the SMAD/MAPK signaling pathways. Treatment of 5-day-old hamsters with type I BMP receptor inhibitor, LDN-193189, for 5 days reduced p38 MAPK phosphorylation and drastically suppressed BAT formation of interscapular adipose tissue. In conclusion, adipocytes and stromal cells regulate brown adipogenesis through secretory factors during the postnatal white-to-brown conversion of adipose tissue in Syrian hamsters.

4.
Metabolism ; 113: 154396, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33065161

RESUMEN

BACKGROUND: Brown adipose tissue (BAT) is a site of metabolic thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1) and represents a target for a therapeutic intervention in obesity. Cold exposure activates UCP1-mediated thermogenesis in BAT and causes drastic changes in glucose, lipid, and amino acid metabolism; however, the relationship between these metabolic changes and UCP1-mediated thermogenesis is not fully understood. METHODS: We conducted metabolomic and GeneChip array analyses of BAT after 4-h exposure to cold temperature (10 °C) in wild-type (WT) and UCP1-KO mice. RESULTS: Cold exposure largely increased metabolites of the glycolysis pathway and lactic acid levels in WT, but not in UCP1-KO, mice, indicating that aerobic glycolysis is enhanced as a consequence of UCP1-mediated thermogenesis. GeneChip array analysis of BAT revealed that there were 2865 genes upregulated by cold exposure in WT mice, and 838 of these were upregulated and 74 were downregulated in UCP1-KO mice. Pathway analysis revealed the enrichment of genes involved in fatty acid (FA) ß oxidation and triglyceride (TG) synthesis in both WT and UCP1-KO mice, suggesting that these metabolic pathways were enhanced by cold exposure independently of UCP1-mediated thermogenesis. FA and cholesterol biosynthesis pathways were enhanced only in UCP1-KO mice. Cold exposure also significantly increased the BAT content of proline, tryptophan, and phenylalanine amino acids in both WT and UCP1-KO mice. In WT mice, cold exposure significantly increased glutamine content and enhanced the expression of genes related to glutamine metabolism. Surprisingly, aspartate was almost completely depleted after cold exposure in UCP1-KO mice. Gene expression analysis suggested that aspartate was actively utilized after cold exposure both in WT and UCP1-KO mice, but it was replenished from intracellular N-acetyl-aspartate in WT mice. CONCLUSIONS: These results revealed that cold exposure induces UCP1-mediated thermogenesis-dependent glucose utilization and UCP1-independent active lipid metabolism in BAT. In addition, cold exposure largely affects amino acid metabolism in BAT, especially UCP1-dependently enhances glutamine utilization. These results contribute a comprehensive understanding of UCP1-mediated thermogenesis-dependent and thermogenesis-independent metabolism in BAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Frío , Proteína Desacopladora 1/metabolismo , Animales , Ácidos Grasos/metabolismo , Glutamina/metabolismo , Metabolómica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Termogénesis/fisiología , Triglicéridos/biosíntesis
5.
J Vet Med Sci ; 81(6): 799-807, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-30956272

RESUMEN

Brown adipocytes, which exist in brown adipose tissue (BAT), are activated by adrenergic stimulation, depending on the activity of uncoupling protein 1 (UCP1). Beige adipocytes emerge from white adipose tissue (WAT) in response to chronic adrenergic stimulation. We investigated obesity-related changes in responses of both types of adipocytes to adrenergic stimulation in mice. Feeding of mice with high-fat diets (HFD: 45%-kcal fat) for 14 weeks resulted in significantly higher body and WAT weight compared to feeding with normal diets (ND: 10%-kcal fat). Injection with ß3-adrenergic receptor agonist CL316,243 (CL; 0.1 mg/kg, once a day) for one week elevated the mRNA and protein expression levels of UCP1 in BAT, irrespective of diet. In WAT, CL-induced UCP1 expression in ND mice; however, the responses to CL treatment were attenuated in HFD mice, indicating that CL-induced browning of WAT was impaired in obese mice. Flow cytometric analysis revealed a significant decrease in platelet-derived growth factor receptor (PDGFR) α-expressing beige adipocyte progenitors in WAT of HFD mice compared with those of ND mice. Expression of PDGF-B, a PDGFRα ligand, increased in WAT following CL-injection in ND mice, but not in HFD mice. Treatment of mice with a PDGFR inhibitor significantly decreased CL-dependent UCP1 protein induction in WAT. Our study demonstrates that ß3-adrenergic stimulation-dependent beige adipocyte induction in WAT is impaired by obesity in mice, potentially due to obesity-dependent reduction in the number of PDGFRα-expressing progenitors and decreased PDGF-B expression.


Asunto(s)
Adipocitos Beige/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Dioxoles/farmacología , Obesidad/patología , Adipocitos Beige/patología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Dieta Alta en Grasa , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas Proto-Oncogénicas c-sis/metabolismo , Proteína Desacopladora 1/metabolismo
6.
Sci Rep ; 9(1): 13243, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519959

RESUMEN

Brown adipose tissue (BAT) plays an important role in body fat accumulation and the regulation of energy expenditure. Since the role of miRNAs in the pathogenesis of obesity and related metabolic diseases is contentious, we analyzed exosomal miRNAs in serum of healthy subjects with special references to BAT activity and body fat level. Forty male volunteers aged 20-30 years were recruited. Their BAT activity was assessed by fluorodeoxyglucose positron emission tomography and computed tomography after 2 h of cold exposure and expressed as a maximal standardized uptake value (SUVmax). Exosomal miRNA levels was analyzed using microarray and real-time PCR analyses. The miR-122-5p level in the high BAT activity group (SUV ≧ 3) was 53% lower than in the low BAT activity group (SUVmax <3). Pearson's correlation analysis revealed that the serum miR-122-5p level correlated negatively with BAT activity and the serum HDL-cholesterol, and it correlated positively with age, BMI, body fat mass, and total cholesterol and triglyceride serum levels. Multivariate regression analysis revealed that BAT activity was associated with the serum miR-122-5p level independently of the other parameters. These results reveal the serum exosomal miR-122-5p level is negatively associated with BAT activity independently of obesity.


Asunto(s)
Tejido Adiposo Pardo/patología , Índice de Masa Corporal , Exosomas/metabolismo , MicroARNs/sangre , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Adulto , Metabolismo Energético , Fluorodesoxiglucosa F18/metabolismo , Voluntarios Sanos , Humanos , Masculino , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X
7.
J Physiol Sci ; 69(1): 23-30, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29611149

RESUMEN

In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.


Asunto(s)
Adipocitos/citología , Tejido Adiposo Pardo/crecimiento & desarrollo , Proliferación Celular/fisiología , Células Endoteliales/citología , Temperatura , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Animales , Células Endoteliales/metabolismo , Femenino , Masculino , Mesocricetus , Proteína Desacopladora 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
J Vet Med Sci ; 81(10): 1461-1467, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31495802

RESUMEN

Brown adipose tissue (BAT) contributes to non-shivering thermogenesis and plays an important role in body temperature control. The contribution of BAT thermogenesis to body temperature control in a non-cold environment was evaluated using developing hamsters. Immunostaining for uncoupling protein 1 (UCP1), a mitochondrial protein responsible for BAT thermogenesis, indicated that interscapular fat tissue had matured as BAT at day 14. When pups were placed on a thermal plate kept at 23°C, the body surface temperature decreased in day 7- and 10-day-old pups but was maintained at least for 15 min in 14-day-old pups, indicating that hamsters are unable to maintain their body temperature until around day 14 even in a non-cold environment. Body temperature maintenance was also evaluated in UCP1-deficient mice. BAT analysis showed that the UCP1 protein level in Ucp1+/- Hetero mice was 61.3 ± 1.4% of that in wild-type (WT) mice and was undetected in Ucp1-/- knockout (KO) mice. When 12-day-old pups were place on a thermal plate at 23°C, body surface temperature was maintained for at least 15 min in WT and Hetero mice but gradually dropped by 2.4 ± 0.2°C in 15 min in KO mice. It is concluded that BAT thermogenesis is indispensable for body temperature maintenance in pups of hamsters and mice, even in the non-cold circumstances. The early life poikilothermy and the later acquirement of homeothermy in hamsters may be because of the postnatal development of BAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Animales Recién Nacidos/fisiología , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo , Animales , Temperatura Corporal , Cricetinae , Mesocricetus , Ratones
9.
J Appl Physiol (1985) ; 124(1): 99-108, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982944

RESUMEN

To investigate the postnatal development of brown adipose tissue (BAT) in Syrian hamsters, we histologically examined interscapular fat tissue from 5-16-day-old pups, focusing on how brown adipocytes arise. Interscapular fat of 5-day-old hamsters mainly consisted of white adipocytes containing large unilocular lipid droplets, as observed in typical white adipose tissue (WAT). On day 7, clusters of small, proliferative nonadipocytes with a strong immunoreactivity for Ki67 appeared near the edge of the interscapular fat tissue. The area of the Ki67-positive regions expanded to ~50% of the total tissue area by day 10. The interscapular fat showed the typical BAT feature by day 16. A brown adipocyte-specific marker, uncoupling protein-1, was clearly detected on day 10 and thereafter, while not detected on day 7. During conversion of interscapular fat from WAT to BAT, unilocular adipocytes completely and rapidly disappeared without obvious apoptosis. Dual immunofluorescence staining for Ki67 and monocarboxylate transporter 1 (MCT1), another selective marker for brown adipocytes, revealed that most of the proliferating cells were of the brown adipocyte lineage. Electron microscopic examination showed that some of the white adipocytes contained small lipid droplets in addition to the large droplet and expressed MCT1 as do progenitor and mature brown adipocytes, implying a direct conversion from white to brown adipocytes. These results suggest that BAT of Syrian hamsters develops postnatally through two different pathways: the proliferation and differentiation of brown adipocyte progenitors and the conversion of unilocular adipocytes to multilocular brown adipocytes. NEW & NOTEWORTHY Brown and white adipose tissues (BAT and WAT, respectively) are quite different in morphological features and function; however, the boundary between these tissues is obscure. In this study, we histologically evaluated the process of BAT development in Syrian hamsters, which shows postnatal conversion of WAT to BAT. Our results suggest that brown adipocytes arise through two different pathways: the proliferation and differentiation of brown adipocyte progenitors and the conversion from white adipocytes.


Asunto(s)
Adipocitos Marrones , Tejido Adiposo/citología , Adipocitos Blancos/fisiología , Animales , Movimiento Celular , Proliferación Celular , Cricetinae , Femenino , Masculino , Mesocricetus , Células Madre/fisiología
10.
J Physiol Sci ; 68(5): 601-608, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28879502

RESUMEN

Sympathetic stimulation induces beige adipocytes in white adipose tissue (WAT), known as browning of WAT. In this study, exposure of mice to cold ambient temperature (10 °C) for 24 h induced the mRNA expression of uncoupling protein 1 (UCP1), a marker for beige adipocytes, in inguinal WAT, but not in perigonadal WAT. Thus, we examined the role of macrophages in depot-dependent WAT browning in mice. Flowcytometric analysis showed that total number of macrophages was higher in perigonadal WAT than in inguinal WAT. Cold exposure failed to change the expression of macrophage marker genes in inguinal WAT; however, it increased the mRNA expression of CD11c and tumor necrosis factor-α in perigonadal WAT, indicating that proinflammatory M1 macrophage is activated. The removal of macrophages using clodronate significantly enhanced cold-induced UCP1 mRNA expression in perigonadal WAT. These results suggest that M1 macrophages are involved in the phenotype of perigonadal WAT that hardly undergo browning.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Macrófagos/fisiología , Animales , Frío , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Obesity (Silver Spring) ; 25(2): 417-423, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28026903

RESUMEN

OBJECTIVE: There are two types of thermogenic adipocytes expressing uncoupling protein (UCP)-1: the brown adipocyte activated by adrenergic stimulation and the beige adipocyte that appears within the white adipose tissue (WAT) in response to chronic adrenergic stimulation. This study examined age-related changes in responses of both types of adipocytes to adrenergic stimulation in mice. METHODS: Aged (age 20 months) and young (4 months) mice were injected daily with either saline or ß3-adrenergic receptor agonist CL316,243 (CL; 0.1 mg/kg, once a day) for 1 week. RESULTS: The body and WAT weight tended to be higher in aged mice. CL treatment increased UCP-1 protein amounts in both brown adipose tissue and inguinal WAT, suggesting activation of brown and beige adipocytes. However, induction of beige adipocytes was impaired in aged mice, whereas brown adipocyte activation was comparable to young mice. The number of platelet-derived growth factor receptor α-expressing progenitor cells, which were reported to differentiate into beige adipocytes, significantly decreased in inguinal WAT of aged mice compared with that of young mice. CONCLUSIONS: Inductive ability of beige adipocytes in WAT declines with aging in mice. It may be partly because of a decreased number of progenitor cells associated with aging.


Asunto(s)
Adipocitos Beige/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Peso Corporal/efectos de los fármacos , Factores de Edad , Animales , Dioxoles/farmacología , Canales Iónicos/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Termogénesis/efectos de los fármacos
12.
Sci Rep ; 7(1): 6648, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28751675

RESUMEN

We previously reported brown adipocytes can proliferate even after differentiation. To test the involvement of mature adipocyte proliferation in cell number control in fat tissue, we generated transgenic (Tg) mice over-expressing cell-cycle inhibitory protein p27 specifically in adipocytes, using the aP2 promoter. While there was no apparent difference in white adipose tissue (WAT) between wild-type (WT) and Tg mice, the amount of brown adipose tissue (BAT) was much smaller in Tg mice. Although BAT showed a normal cellular morphology, Tg mice had lower content of uncoupling protein 1 (UCP1) as a whole, and attenuated cold exposure- or ß3-adrenergic receptor (AR) agonist-induced thermogenesis, with a decrease in the number of mature brown adipocytes expressing proliferation markers. An agonist for the ß3-AR failed to increase the number of proliferating brown adipocytes, UCP1 content in BAT, and oxygen consumption in Tg mice, although the induction and the function of beige adipocytes in inguinal WAT from Tg mice were similar to WT mice. These results show that brown adipocyte proliferation significantly contributes to BAT development and adaptive thermogenesis in mice, but not to induction of beige adipocytes.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Puntos de Control del Ciclo Celular , Termogénesis , Adipogénesis , Tejido Adiposo Beige , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proliferación Celular , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Receptores Adrenérgicos beta 3/metabolismo , Transducción de Señal , Proteína Desacopladora 1/genética
13.
PLoS One ; 11(11): e0166579, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27846311

RESUMEN

Hyperplasia of brown adipose tissue (BAT) is a fundamental mechanism for adaptation to survive in the cold environment in rodents. To determine which cell types comprising BAT contribute to tissue hyperplasia, immunohistochemical analysis using a proliferative marker Ki67 was performed on the BAT from 6-week-old C57BL/6J mice housed at 23°C (control) or 10°C (cold) for 5 days. Interestingly, in the control group, the cell proliferative marker Ki67 was detected in the nuclei of uncoupling protein 1-positive mature brown adipocytes (7.2% ± 0.4% of brown adipocyte), as well as in the non-adipocyte stromal-vascular (SV) cells (19.6% ± 2.3% of SV cells), which include preadiopocytes. The percentage of Ki67-positive brown adipocytes increased to 25.6% ± 1.8% at Day 1 after cold exposure and was significantly higher than the non-cold acclimated control until Day 5 (21.8% ± 1.7%). On the other hand, the percentage of Ki67-positive SV cells gradually increased by a cold exposure and peaked to 42.1% ± 8.3% at Day 5. Injection of a ß3-adrenergic receptor (ß3-AR) agonist for continuous 5 days increased the number of Ki67-positive brown adipocytes even at Day 1 but not that of SV cells. In addition, the ß3-AR antagonist, but not ß1-AR antagonist, attenuated the cold exposure-induced increase in the number of Ki67-positive brown adipocytes. These results suggest that mature brown adipocytes proliferate immediately after cold exposure in a ß3-AR-mediated pathway. Thus, proliferation of mature brown adipocytes as well as preadipocytes in SV cells may contribute to cold exposure-induced BAT hyperplasia.


Asunto(s)
Adaptación Fisiológica/genética , Adipocitos Marrones/metabolismo , Antígeno Ki-67/biosíntesis , Receptores Adrenérgicos beta 3/biosíntesis , Adipocitos Marrones/fisiología , Agonistas de Receptores Adrenérgicos beta 3/administración & dosificación , Animales , Proliferación Celular/genética , Frío , Regulación de la Expresión Génica , Hiperplasia/genética , Antígeno Ki-67/genética , Ratones , Receptores Adrenérgicos beta 1/biosíntesis , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 3/genética , Transducción de Señal
14.
PLoS One ; 8(12): e84229, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386355

RESUMEN

Chronic adrenergic activation leads to the emergence of beige adipocytes in some depots of white adipose tissue in mice. Despite their morphological similarities to brown adipocytes and their expression of uncoupling protein 1 (UCP1), a thermogenic protein exclusively expressed in brown adipocytes, the beige adipocytes have a gene expression pattern distinct from that of brown adipocytes. However, it is unclear whether the thermogenic function of beige adipocytes is different from that of classical brown adipocytes existing in brown adipose tissue. To examine the thermogenic ability of UCP1 expressed in beige and brown adipocytes, the adipocytes were isolated from the fat depots of C57BL/6J mice housed at 24°C (control group) or 10°C (cold-acclimated group) for 3 weeks. Morphological and gene expression analyses revealed that the adipocytes isolated from brown adipose tissue of both the control and cold-acclimated groups consisted mainly of brown adipocytes. These brown adipocytes contained large amounts of UCP1 and increased their oxygen consumption when stimulated with norepinephirine. Adipocytes isolated from the perigonadal white adipose tissues of both groups and the inguinal white adipose tissue of the control group were white adipocytes that showed no increase in oxygen consumption after norepinephrine stimulation. Adipocytes isolated from the inguinal white adipose tissue of the cold-acclimated group were a mixture of white and beige adipocytes, which expressed UCP1 and increased their oxygen consumption in response to norepinephrine. The UCP1 content and thermogenic ability of beige adipocytes estimated on the basis of their abundance in the cell mixture were similar to those of brown adipocytes. These results revealed that the inducible beige adipocytes have potent thermogenic ability comparable to classical brown adipocytes.


Asunto(s)
Adipocitos/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Termogénesis , Adaptación Fisiológica , Animales , Frío , Masculino , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno , Proteína Desacopladora 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA