Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ASAIO J ; 49(6): 701-7, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14655738

RESUMEN

In this study, the authors used diamond-like carbon film to coat the ellipsoidal diaphragm (polyurethane elastomer) of artificial hearts. The purpose of such coatings is to prevent the penetration of hydraulic silicone oil and blood through the diaphragm. To attach diamond-like carbon film uniformly on the diaphragm, the authors developed a special electrode. In estimating the uniformity of the diamond-like carbon film, the thickness was measured using a scanning electron microscope, and the characteristics of the diamond-like carbon film was investigated using infrared spectroscopy, Ar-laser Raman spectrophotometer, and x-ray photoelectron spectrometer. Also, to estimate the penetration of silicone oil through the diaphragm, in vitro testing was operated by alternating the pressure of silicone oil for 20 days. The authors were able to successfully attach uniform deposition of diamond-like carbon film on the ellipsoidal diaphragm. In this in vitro test, diamond-like carbon film was proven to have good stability. The amount of silicone oil penetration was improved by one-third using the diamond-like carbon film coating compared with an uncoated diaphragm. It is expected that through the use of the diamond-like carbon film, the dynamic compatibility of an artificial heart diaphragm will increase.


Asunto(s)
Carbono , Materiales Biocompatibles Revestidos , Diamante , Corazón Artificial , Membranas Artificiales , Difusión , Diseño de Equipo , Humanos , Técnicas In Vitro , Aceites , Flujo Pulsátil , Silicio , Espectrofotometría Infrarroja , Propiedades de Superficie
2.
ASAIO J ; 49(3): 243-9, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12790371

RESUMEN

Electrohydraulic total artificial heart (EHTAH) and electrohydraulic ventricular assist device (EHVAD) systems have been developed in our institute. The EHTAH system comprises a pumping unit consisting of blood pumps and an actuator, as well as an electronic unit consisting of an internal controller, internal and external batteries, and transcutaneous energy transfer (TET) and optical telemetry (TOT) subunits. The actuator, placed outside the pericardial space, reciprocates and delivers hydraulic silicone oil to the alternate blood pumps through a pair of flexible oil conduits. The pumping unit with an external controller was implanted in 10 calves as small as 55 kg. Two animals survived for more than 12 weeks in a good general condition. The assumed cardiac output ranged between 6 and 10 L/min, the power consumption was 12-18 W, and the energy efficiency was estimated to be 9-11%. Initial implantation of subtotal system including electronic units was further conducted in another calf weighing 73 kg. It survived for 3 days with a completely tether free system. The EHVAD system is developed by using the left blood pump and the actuator of the EHTAH, which were packaged in a compact metal casing with a compliance chamber. In vitro testing demonstrated maximum output more than 9 L/min and more than 13% maximum efficiency. The initial animal testing lasted for 25 days. These results indicate that our EHTAH and EHVAD have the potential to be totally implantable systems.


Asunto(s)
Corazón Artificial , Animales , Gasto Cardíaco/fisiología , Bovinos , Diseño de Equipo , Corazón Artificial/efectos adversos , Tromboembolia/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA