Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Rev Geophys ; 58(3): e2019RG000672, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32879921

RESUMEN

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea-level change. Here we review the individual processes which lead to sea-level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea-level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea-level observation network-particularly as related to satellite observations-in the improved scientific understanding of the contributors to regional sea-level change.

2.
Geophys Res Lett ; 44(10): 5133-5141, 2017 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-28943678

RESUMEN

The tide-gauge record from the North American East Coast reveals significant accelerations in sea level starting in the late twentieth century. The estimated post-1990 accelerations range from near zero to ∼0.3 mm yr-2. We find that the observed sea level acceleration is well modeled using several processes: mass change in Greenland and Antarctica as measured by the Gravity Recovery and Climate Experiment satellites; ocean dynamic and steric variability provided by the GECCO2 ocean synthesis; and the inverted barometer effect. However, to achieve this fit requires estimation of an admittance for the dynamical and steric contribution, possibly due to the coarse resolution of this analysis or to simplifications associated with parameterization of bottom friction in the shallow coastal areas. The acceleration from ice loss alone is equivalent to a regional sea level rise in one century of 0.2 m in the north and 0.75 m in the south of this region.

3.
Nat Commun ; 10(1): 3445, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371727

RESUMEN

Salinity is an essential proxy for estimating the global net freshwater input into the ocean. Due to the limited spatial and temporal coverage of the existing salinity measurements, previous studies of global salinity changes focused mostly on the surface and upper oceans. Here, we examine global ocean salinity changes and ocean vertical salt fluxes over the full depth in a dynamically consistent and data-constrained ocean state estimate. The changes of the horizontally averaged salinity display a vertically layered structure, consistent with the profiles of the ocean vertical salt fluxes. For salinity changes in the relatively well-observed upper ocean, the contribution of vertical exchange of salt can be on the same order of the net surface freshwater input. The vertical redistribution of salt thus should be considered in inferring changes in global ocean salinity and the hydrological cycle from the surface and upper ocean measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA