Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(47): e2213432119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36378644

RESUMEN

Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.


Asunto(s)
Citocromos c , Hemo , Animales , Secuencia de Aminoácidos , Anticuerpos Monoclonales , Citocromos c/química , Hemo/química , Hibridomas , Oxidación-Reducción , Melanoma Experimental , Ratones
2.
Bioorg Med Chem Lett ; 78: 129021, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36228968

RESUMEN

This Letter describes our ongoing effort to improve the clearance of selective M5 antagonists. Herein, we report the replacement of the previously disclosed piperidine amide (4, disclosed in Part 1) with a pyrrolidine amide core. Several compounds within this series provided good potency, subtype selectivity, and low to moderate clearance profiles. Interestingly, the left-hand side SAR for this series diverged from our earlier efforts.


Asunto(s)
Amidas , Pirrolidinas , Amidas/farmacología , Pirrolidinas/farmacología , Cinética , Antagonistas Muscarínicos
3.
Bioorg Med Chem Lett ; 76: 128988, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113671

RESUMEN

The lack of potent and selective tool compounds with pharmaceutically favorable properties limits the in vivo understanding of muscarinic acetylcholine receptor subtype 5 (M5) biology. Previously, we presented a highly potent and selective M5 antagonist VU6019650 with a suboptimal clearance profile as our second-generation tool compound. Herein, we disclose our ongoing efforts to generate next-generation M5 antagonists with improved clearance profiles. A mix and match approach between VU6019650 (lead) and VU0500325 (HTS hit) generated a piperidine amide-based novel M5 antagonist series. Several analogs within this series, including 29f, provided good on-target potency with improved clearance profiles, though room for improvement remains.


Asunto(s)
Amidas , Receptores Muscarínicos , Amidas/farmacología , Cinética , Piperidinas/farmacología
4.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955551

RESUMEN

The rapid emergence of antibiotic resistance demands new antimicrobial strategies that are less likely to develop resistance. Augmenting the synthesis of endogenous host defense peptides (HDPs) has been proven to be an effective host-directed therapeutic approach. This study aimed to identify small-molecule compounds with a strong ability to induce endogenous HDP synthesis for further development as novel antimicrobial agents. By employing a stable HDP promoter-driven luciferase reporter cell line known as HTC/AvBD9-luc, we performed high-throughput screening of 5002 natural and synthetic compounds and identified 110 hits with a minimum Z-score of 2.0. Although they were structurally and functionally diverse, half of these hits were inhibitors of class I histone deacetylases, the phosphoinositide 3-kinase pathway, ion channels, and dopamine and serotonin receptors. Further validations revealed mocetinostat, a benzamide histone deacetylase inhibitor, to be highly potent in enhancing the expression of multiple HDP genes in chicken macrophage cell lines and jejunal explants. Importantly, mocetinostat was more efficient than entinostat and tucidinostat, two structural analogs, in promoting HDP gene expression and the antibacterial activity of chicken macrophages. Taken together, mocetinostat, with its ability to enhance HDP synthesis and the antibacterial activity of host cells, could be potentially developed as a novel antimicrobial for disease control and prevention.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/metabolismo , Pollos/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
5.
J Biol Chem ; 295(21): 7289-7300, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32284327

RESUMEN

N-Acyl-phosphatidylethanolamine phospholipase D (NAPE-PLD) (EC 3.1.4.4) catalyzes the final step in the biosynthesis of N-acyl-ethanolamides. Reduced NAPE-PLD expression and activity may contribute to obesity and inflammation, but a lack of effective NAPE-PLD inhibitors has been a major obstacle to elucidating the role of NAPE-PLD and N-acyl-ethanolamide biosynthesis in these processes. The endogenous bile acid lithocholic acid (LCA) inhibits NAPE-PLD activity (with an IC50 of 68 µm), but LCA is also a highly potent ligand for TGR5 (EC50 0.52 µm). Recently, the first selective small-molecule inhibitor of NAPE-PLD, ARN19874, has been reported (having an IC50 of 34 µm). To identify more potent inhibitors of NAPE-PLD, here we used a quenched fluorescent NAPE analog, PED-A1, as a substrate for recombinant mouse Nape-pld to screen a panel of bile acids and a library of experimental compounds (the Spectrum Collection). Muricholic acids and several other bile acids inhibited Nape-pld with potency similar to that of LCA. We identified 14 potent Nape-pld inhibitors in the Spectrum Collection, with the two most potent (IC50 = ∼2 µm) being symmetrically substituted dichlorophenes, i.e. hexachlorophene and bithionol. Structure-activity relationship assays using additional substituted dichlorophenes identified key moieties needed for Nape-pld inhibition. Both hexachlorophene and bithionol exhibited significant selectivity for Nape-pld compared with nontarget lipase activities such as Streptomyces chromofuscus PLD or serum lipase. Both also effectively inhibited NAPE-PLD activity in cultured HEK293 cells. We conclude that symmetrically substituted dichlorophenes potently inhibit NAPE-PLD in cultured cells and have significant selectivity for NAPE-PLD versus other tissue-associated lipases.


Asunto(s)
Diclorofeno , Inhibidores Enzimáticos , Fosfolipasa D , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bitionol/química , Bitionol/farmacología , Diclorofeno/química , Diclorofeno/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HEK293 , Hexaclorofeno/química , Hexaclorofeno/farmacología , Humanos , Ratones , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Quinazolinas/química , Quinazolinas/farmacología , Streptomyces/enzimología , Sulfonamidas/química , Sulfonamidas/farmacología
6.
Biochem J ; 477(19): 3695-3707, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32910185

RESUMEN

Infective endocarditis (IE) is a cardiovascular disease often caused by bacteria of the viridans group of streptococci, which includes Streptococcus gordonii and Streptococcus sanguinis. Previous research has found that serine-rich repeat (SRR) proteins on the S. gordonii bacterial surface play a critical role in pathogenesis by facilitating bacterial attachment to sialylated glycans displayed on human platelets. Despite their important role in disease progression, there are currently no anti-adhesive drugs available on the market. Here, we performed structure-based virtual screening using an ensemble docking approach followed by consensus scoring to identify novel small molecule effectors against the sialoglycan binding domain of the SRR adhesin protein Hsa from the S. gordonii strain DL1. The screening successfully predicted nine compounds which were able to displace the native ligand (sialyl-T antigen) in an in vitro assay and bind competitively to Hsa. Furthermore, hierarchical clustering based on the MACCS fingerprints showed that eight of these small molecules do not share a common scaffold with the native ligand. This study indicates that SRR family of adhesin proteins can be inhibited by diverse small molecules and thus prevent the interaction of the protein with the sialoglycans. This opens new avenues for discovering potential drugs against IE.


Asunto(s)
Adhesinas Bacterianas/química , Antibacterianos/química , Hemaglutininas Virales/química , Streptococcus gordonii/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Dominios Proteicos , Streptococcus gordonii/genética , Streptococcus gordonii/metabolismo
7.
Pharmacol Res ; 146: 104268, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31078743

RESUMEN

Novel therapeutic regulators of uterine contractility are needed to manage preterm labor, induce labor and control postpartum hemorrhage. Therefore, we previously developed a high-throughput assay for large-scale screening of small molecular compounds to regulate calcium-mobilization in primary mouse uterine myometrial cells. The goal of this study was to select the optimal myometrial cells for our high-throughput drug discovery assay, as well as determine the similarity or differences of myometrial cells to vascular smooth muscle cells (VSMCs)-the most common off-target of current myometrial therapeutics. Molecular and pharmacological assays were used to compare myometrial cells from four sources: primary cells isolated from term pregnant human and murine myometrium, immortalized pregnant human myometrial (PHM-1) cells and immortalized non-pregnant human myometrial (hTERT-HM) cells. In addition, myometrial cells were compared to vascular SMCs. We found that the transcriptome profiles of hTERT-HM and PHM1 cells were most similar (r = 0.93 and 0.90, respectively) to human primary myometrial cells. Comparative transcriptome profiling of primary human myometrial transcriptome and VSMCs revealed 498 upregulated (p ≤ 0.01, log2FC≥1) genes, of which 142 can serve as uterine-selective druggable targets. In the high-throughput Ca2+-assay, PHM1 cells had the most similar response to primary human myometrial cells in OT-induced Ca2+-release (Emax = 195% and 143%, EC50 = 30 nM and 120 nM, respectively), while all sources of myometrial cells showed excellent and similar robustness and reproducibility (Z' = 0.52 to 0.77). After testing a panel of 61 compounds, we found that the stimulatory and inhibitory responses of hTERT-HM cells were highly-correlated (r = 0.94 and 0.95, respectively) to human primary cells. Moreover, ten compounds were identified that displayed uterine-selectivity (≥5-fold Emax or EC50 compared to VSMCs). Collectively, this study found that hTERT-HM cells exhibited the most similarity to primary human myometrial cells and, therefore, is an optimal substitute for large-scale screening to identify novel therapeutic regulators of myometrial contractility. Moreover, VSMCs can serve as an important counter-screening tool to assess uterine-selectivity of targets and drugs given the similarity observed in the transcriptome and response to compounds.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Miometrio/citología , Adolescente , Adulto , Animales , Células Cultivadas , Femenino , Humanos , Ratones , Persona de Mediana Edad , Embarazo , Transcriptoma , Adulto Joven
8.
Lett Drug Des Discov ; 16(12): 1387-1394, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32201485

RESUMEN

BACKGROUND: This article describes the challenges in the discovery and optimization of mGlu2/4 heterodimer Positive Allosteric Modulators (PAMs). METHODS: Initial forays based on VU0155041, a PAM of both the mGlu4 homodimer and the mGlu2/4 heterodimer, led to flat, intractable SAR that precluded advancement. Screening of a collection of 1,152 FDA approved drugs led to the discovery that febuxostat, an approved xanthine oxidase inhibitor, was a moderately potent PAM of the mGlu2/4 heterodimer (EC50 = 3.4 µM), but was peripherally restricted (rat Kp = 0.03). Optimization of this hit led to PAMs with improved potency (EC50s <800 nM) and improved CNS penetration (rat Kp >2, an ~100-fold increase). RESULTS: However, these new amide analogs of febuxostat proved to be either GIRK1/2 and GIRK1/4 activators (primary carboxamide congeners) or mGlu2 PAMs (secondary and tertiary amides) and not selective mGlu2/4 heterodimer PAMs. CONCLUSION: These results required the team to develop a new screening cascade paradigm, and exemplified the challenges in developing allosteric ligands for heterodimeric receptors.

9.
Mol Pharmacol ; 94(2): 926-937, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29895592

RESUMEN

The inward rectifier potassium (Kir) channel Kir4.1 (KCNJ10) carries out important physiologic roles in epithelial cells of the kidney, astrocytes in the central nervous system, and stria vascularis of the inner ear. Loss-of-function mutations in KCNJ10 lead to EAST/SeSAME syndrome, which is characterized by epilepsy, ataxia, renal salt wasting, and sensorineural deafness. Although genetic approaches have been indispensable for establishing the importance of Kir4.1 in the normal function of these tissues, the availability of pharmacological tools for acutely manipulating the activity of Kir4.1 in genetically normal animals has been lacking. We therefore carried out a high-throughput screen of 76,575 compounds from the Vanderbilt Institute of Chemical Biology library for small-molecule modulators of Kir4.1. The most potent inhibitor identified was 2-(2-bromo-4-isopropylphenoxy)-N-(2,2,6,6-tetramethylpiperidin-4-yl)acetamide (VU0134992). In whole-cell patch-clamp electrophysiology experiments, VU0134992 inhibits Kir4.1 with an IC50 value of 0.97 µM and is 9-fold selective for homomeric Kir4.1 over Kir4.1/5.1 concatemeric channels (IC50 = 9 µM) at -120 mV. In thallium (Tl+) flux assays, VU0134992 is greater than 30-fold selective for Kir4.1 over Kir1.1, Kir2.1, and Kir2.2; is weakly active toward Kir2.3, Kir6.2/SUR1, and Kir7.1; and is equally active toward Kir3.1/3.2, Kir3.1/3.4, and Kir4.2. This potency and selectivity profile is superior to Kir4.1 inhibitors amitriptyline, nortriptyline, and fluoxetine. Medicinal chemistry identified components of VU0134992 that are critical for inhibiting Kir4.1. Patch-clamp electrophysiology, molecular modeling, and site-directed mutagenesis identified pore-lining glutamate 158 and isoleucine 159 as critical residues for block of the channel. VU0134992 displayed a large free unbound fraction (fu) in rat plasma (fu = 0.213). Consistent with the known role of Kir4.1 in renal function, oral dosing of VU0134992 led to a dose-dependent diuresis, natriuresis, and kaliuresis in rats. Thus, VU0134992 represents the first in vivo active tool compound for probing the therapeutic potential of Kir4.1 as a novel diuretic target for the treatment of hypertension.


Asunto(s)
Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/química , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión , Diuréticos/química , Electrólitos , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Canales de Potasio de Rectificación Interna/genética , Ratas , Bibliotecas de Moléculas Pequeñas/química , Especificidad por Sustrato
10.
Am J Physiol Renal Physiol ; 310(8): F705-F716, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26661656

RESUMEN

No therapies have been shown to accelerate recovery or prevent fibrosis after acute kidney injury (AKI). In part, this is because most therapeutic candidates have to be given at the time of injury and the diagnosis of AKI is usually made too late for drugs to be efficacious. Strategies to enhance post-AKI repair represent an attractive approach to address this. Using a phenotypic screen in zebrafish, we identified 4-(phenylthio)butanoic acid (PTBA), which promotes proliferation of embryonic kidney progenitor cells (EKPCs), and the PTBA methyl ester UPHD25, which also increases postinjury repair in ischemia-reperfusion and aristolochic acid-induced AKI in mice. In these studies, a new panel of PTBA analogs was evaluated. Initial screening was performed in zebrafish EKPC assays followed by survival assays in a gentamicin-induced AKI larvae zebrafish model. Using this approach, we identified UPHD186, which in contrast to UPHD25, accelerates recovery and reduces fibrosis when administered several days after ischemia-reperfusion AKI and reduces fibrosis after unilateral ureteric obstruction in mice. UPHD25 and 186 are efficiently metabolized to the active analog PTBA in liver and kidney microsome assays, indicating both compounds may act as PTBA prodrugs in vivo. UPHD186 persists longer in the circulation than UPHD25, suggesting that sustained levels of UPHD186 may increase efficacy by acting as a reservoir for renal metabolism to PTBA. These findings validate use of zebrafish EKPC and AKI assays as a drug discovery strategy for molecules that reduce fibrosis in multiple AKI models and can be administered days after initiation of injury.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Butiratos/uso terapéutico , Riñón/efectos de los fármacos , Sulfuros/uso terapéutico , Lesión Renal Aguda/patología , Animales , Butiratos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Riñón/patología , Masculino , Ratones , Sulfuros/farmacología , Pez Cebra
11.
Bioorg Med Chem Lett ; 25(22): 5115-20, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26475522

RESUMEN

We report the optimization of a series of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from an acyl dihydropyrazolo[1,5-a]pyrimidinone class. Investigation of exocyclic amide transpositions with this unique 5,6-bicyclic core were conducted in attempt to modulate physicochemical properties and identify a suitable backup candidate with a reduced half-life. A potent and selective PAM, 1-(2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyrimidin-4(5H)-yl)ethanone (9a, VU0462807), was identified with superior solubility and efficacy in the acute amphetamine-induced hyperlocomotion (AHL) rat model with a minimum effective dose of 3mg/kg. Attempts to mitigate oxidative metabolism of the western phenoxy of 9a through extensive modification and profiling are described.


Asunto(s)
Encéfalo/metabolismo , Pirazoles/farmacocinética , Pirimidinas/farmacocinética , Pirimidinonas/farmacocinética , Receptor del Glutamato Metabotropico 5/agonistas , Regulación Alostérica , Animales , Perros , Humanos , Ligandos , Masculino , Actividad Motora/efectos de los fármacos , Pirazoles/sangre , Pirazoles/síntesis química , Pirazoles/aislamiento & purificación , Pirazoles/farmacología , Pirimidinas/sangre , Pirimidinas/síntesis química , Pirimidinas/farmacología , Pirimidinonas/sangre , Pirimidinonas/síntesis química , Pirimidinonas/aislamiento & purificación , Pirimidinonas/farmacología , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
12.
Bioorg Med Chem Lett ; 24(15): 3641-6, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24961642

RESUMEN

We report the optimization of a series of novel metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) from a 5,6-bicyclic class of dihydropyrazolo[1,5-a]pyridin-4(5H)-ones containing a phenoxymethyl linker. Studies focused on a survey of non-amide containing hydrogen bond accepting (HBA) pharmacophore replacements. A highly potent and selective PAM, 2-(phenoxymethyl)-6,7-dihydropyrazolo[1,5-a]pyridin-4(5H)-one (11, VU0462054), bearing a simple ketone moiety, was identified (LE=0.52, LELP=3.2). In addition, hydroxyl, difluoro, ether, and amino variations were examined. Despite promising lead properties and exploration of alternative core heterocycles, linkers, and ketone replacements, oxidative metabolism and in vivo clearance remained problematic for the series.


Asunto(s)
Descubrimiento de Drogas , Piperidonas/farmacología , Pirazoles/farmacología , Receptor del Glutamato Metabotropico 5/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Estructura Molecular , Piperidonas/síntesis química , Piperidonas/química , Pirazoles/síntesis química , Pirazoles/química , Ratas , Relación Estructura-Actividad
13.
SLAS Discov ; 29(1): 66-76, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925159

RESUMEN

A rapid drug discovery response to influenza outbreaks with the potential to reach pandemic status could help minimize the virus's impact by reducing the time to identify anti-influenza drugs. Although several anti-influenza strategies have been considered in the search for new drugs, only a few therapeutic agents are approved for clinical use. The cytopathic effect induced by the influenza virus in Madin Darby canine kidney (MDCK) cells has been widely used for high-throughput anti-influenza drug screening, but the fact that the MDCK cells are not human cells constitutes a disadvantage when searching for new therapeutic agents for human use. We have developed a highly sensitive cell-based imaging assay for the identification of inhibitors of influenza A and B virus that is high-throughput compatible using the A549 human cell line. The assay has also been optimized for the assessment of the neutralizing effect of anti-influenza antibodies in the absence of trypsin, which allows testing of purified antibodies and serum samples. This assay platform can be applied to full high-throughput screening campaigns or later stages requiring quantitative potency determinations for structure-activity relationships.


Asunto(s)
Gripe Humana , Animales , Perros , Humanos , Gripe Humana/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Línea Celular , Células de Riñón Canino Madin Darby , Técnica del Anticuerpo Fluorescente
14.
SLAS Discov ; 29(5): 100160, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761981

RESUMEN

Four years after the beginning of the COVID-19 pandemic, it is important to reflect on the events that have occurred during that time and the knowledge that has been gained. The response to the pandemic was rapid and highly resourced; it was also built upon a foundation of decades of federally funded basic and applied research. Laboratories in government, pharmaceutical, academic, and non-profit institutions all played roles in advancing pre-2020 discoveries to produce clinical treatments. This perspective provides a summary of how the development of high-throughput screening methods in a biosafety level 3 (BSL-3) environment at Southern Research Institute (SR) contributed to pandemic response efforts. The challenges encountered are described, including those of a technical nature as well as those of working under the pressures of an unpredictable virus and pandemic.


Asunto(s)
COVID-19 , Ensayos Analíticos de Alto Rendimiento , Pandemias , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Antivirales/uso terapéutico , Antivirales/farmacología
15.
J Med Chem ; 67(16): 14394-14413, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39105778

RESUMEN

While the muscarinic acetylcholine receptor mAChR subtype 5 (M5) has been studied over decades, recent findings suggest that more in-depth research is required to elucidate a thorough understanding of its physiological function related to neurological and psychiatric disorders. Our efforts to identify potent, selective, and pharmaceutically favorable next-generation M5 antagonist tool compounds have led to the discovery of a novel triazolopyridine-based series. In particular, VU6036864 (45) showed exquisite potency (human M5 IC50 = 20 nM), good subtype selectivity (>500 fold selectivity against human M1-4), desirable brain exposure (Kp = 0.68, Kp,uu = 0.65), and high oral bioavailability (%F > 100%). VU6036864 (45) and its close analogues will support further studies of M5 as advanced antagonist tool compounds and play an important role in the emerging biology of M5.


Asunto(s)
Piridinas , Receptor Muscarínico M5 , Humanos , Animales , Relación Estructura-Actividad , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química , Piridinas/farmacocinética , Receptor Muscarínico M5/antagonistas & inhibidores , Receptor Muscarínico M5/metabolismo , Triazoles/farmacología , Triazoles/química , Triazoles/síntesis química , Antagonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/síntesis química , Cricetulus , Células CHO , Ratas , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
16.
Drug Metab Dispos ; 41(9): 1703-14, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23821185

RESUMEN

Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs possessing varying degrees of agonist activity (ago-PAMs), as well as PAMs devoid of agonist activity. However, previous studies revealed that ago-PAMs can induce seizure activity and behavioral convulsions, whereas pure mGlu5 PAMs do not induce these adverse effects. We recently identified a potent and selective mGlu5 PAM, VU0403602, that was efficacious in reversing amphetamine-induced hyperlocomotion in rats. The compound also induced time-dependent seizure activity that was blocked by coadministration of the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine. Consistent with potential adverse effects induced by ago-PAMs, we found that VU0403602 had significant allosteric agonist activity. Interestingly, inhibition of VU0403602 metabolism in vivo by a pan cytochrome P450 (P450) inactivator completely protected rats from induction of seizures. P450-mediated biotransformation of VU0403602 was discovered to produce another potent ago-PAM metabolite-ligand (M1) of mGlu5. Electrophysiological studies in rat hippocampal slices confirmed agonist activity of both M1 and VU0403602 and revealed that M1 can induce epileptiform activity in a manner consistent with its proconvulsant behavioral effects. Furthermore, unbound brain exposure of M1 was similar to that of the parent compound, VU0403602. These findings indicate that biotransformation of mGlu5 PAMs to active metabolite-ligands may contribute to the epileptogenesis observed after in vivo administration of this class of allosteric receptor modulators.


Asunto(s)
Receptor del Glutamato Metabotropico 5/metabolismo , Convulsiones/inducido químicamente , Regulación Alostérica/efectos de los fármacos , Animales , Astrocitos/enzimología , Astrocitos/metabolismo , Biotransformación , Línea Celular , Sistema Enzimático del Citocromo P-450/metabolismo , Células HEK293 , Hipocampo/enzimología , Hipocampo/metabolismo , Humanos , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Convulsiones/metabolismo
17.
Bioorg Med Chem Lett ; 23(10): 2996-3000, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23562060

RESUMEN

This Letter describes the further chemical optimization of the M5 PAM MLPCN probes ML129 and ML172. A multi-dimensional iterative parallel synthesis effort quickly explored isatin replacements and a number of southern heterobiaryl variations with no improvement over ML129 and ML172. An HTS campaign identified several weak M5 PAMs (M5 EC50 >10µM) with a structurally related isatin core that possessed a southern phenethyl ether linkage. While SAR within the HTS series was very shallow and unable to be optimized, grafting the phenethyl ether linkage onto the ML129/ML172 cores led to the first sub-micromolar M5 PAM, ML326 (VU0467903), (human and rat M5 EC50s of 409nM and 500nM, respectively) with excellent mAChR selectivity (M1-M4 EC50s >30µM) and a robust 20-fold leftward shift of the ACh CRC.


Asunto(s)
Descubrimiento de Drogas , Indoles/farmacología , Receptores Muscarínicos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Ratas , Relación Estructura-Actividad
18.
Bioorg Med Chem Lett ; 23(1): 346-50, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23177787

RESUMEN

Herein we report a next generation muscarinic receptor 4 (M(4)) positive allosteric modulator (PAM), ML253 which exhibits nanomolar activity at both the human (EC(50)=56 nM) and rat (EC(50)=176 nM) receptors and excellent efficacy by the left-ward shift of the ACh concentration response curve (fold shift, human=106; rat=50). In addition, ML253 is selective against the four other muscarinic subtypes, displays excellent CNS exposure and is active in an amphetamine-induced hyperlocomotion assay.


Asunto(s)
Amidas/química , Encéfalo/metabolismo , Piridinas/química , Receptor Muscarínico M4/metabolismo , Tiofenos/química , Regulación Alostérica , Amidas/farmacocinética , Amidas/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Colinérgicos/química , Colinérgicos/farmacocinética , Colinérgicos/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Semivida , Humanos , Unión Proteica , Piridinas/farmacocinética , Piridinas/uso terapéutico , Ratas , Receptor Muscarínico M4/química , Esquizofrenia/tratamiento farmacológico , Relación Estructura-Actividad , Tiofenos/farmacocinética , Tiofenos/uso terapéutico
19.
Mol Pharmacol ; 82(5): 860-75, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22863693

RESUMEN

Drug discovery programs increasingly are focusing on allosteric modulators as a means to modify the activity of G protein-coupled receptor (GPCR) targets. Allosteric binding sites are topographically distinct from the endogenous ligand (orthosteric) binding site, which allows for co-occupation of a single receptor with the endogenous ligand and an allosteric modulator that can alter receptor pharmacological characteristics. Negative allosteric modulators (NAMs) inhibit and positive allosteric modulators (PAMs) enhance the affinity and/or efficacy of orthosteric agonists. Established approaches for estimation of affinity and efficacy values for orthosteric ligands are not appropriate for allosteric modulators, and this presents challenges for fully understanding the actions of novel modulators of GPCRs. Metabotropic glutamate receptor 5 (mGlu(5)) is a family C GPCR for which a large array of allosteric modulators have been identified. We took advantage of the many tools for probing allosteric sites on mGlu(5) to validate an operational model of allosterism that allows quantitative estimation of modulator affinity and cooperativity values. Affinity estimates derived from functional assays fit well with affinities measured in radioligand binding experiments for both PAMs and NAMs with diverse chemical scaffolds and varying degrees of cooperativity. We observed modulation bias for PAMs when we compared mGlu(5)-mediated Ca(2+) mobilization and extracellular signal-regulated kinase 1/2 phosphorylation data. Furthermore, we used this model to quantify the effects of mutations that reduce binding or potentiation by PAMs. This model can be applied to PAM and NAM potency curves in combination with maximal fold-shift data to derive reliable estimates of modulator affinities.


Asunto(s)
Receptores de Glutamato Metabotrópico/metabolismo , Regulación Alostérica , Sitio Alostérico , Animales , Calcio/metabolismo , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Mutación Puntual , Ensayo de Unión Radioligante , Ratas , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Relación Estructura-Actividad
20.
Mol Pharmacol ; 81(2): 120-33, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22021324

RESUMEN

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu(5)) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu(5) PAMs act as pure PAMs, only potentiating mGlu(5) responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu(5)-expressing cell lines. All mGlu(5) PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu(5) pure PAMs that are devoid of detectable agonist activity and structurally related mGlu(5) ago-PAMs that activate mGlu(5) alone in cell lines. Studies of mGlu(5) PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu(5) receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu(5) PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu(5) PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.


Asunto(s)
Sistema Nervioso Central/fisiología , Receptores de Glutamato Metabotrópico/agonistas , Regulación Alostérica , Animales , Antipsicóticos , Astrocitos , Línea Celular , Sistema Nervioso Central/efectos de los fármacos , Humanos , Ratones , Neuronas , Receptor del Glutamato Metabotropico 5
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA