Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37108509

RESUMEN

By 2050, at least 700 million people will require hearing therapy while 2.5 billion are projected to suffer from hearing loss. Sensorineural hearing loss (SNHL) arises from the inability of the inner ear to convert fluid waves into neural electric signals because of injury to cochlear hair cells that has resulted in their death. In addition, systemic chronic inflammation implicated in other pathologies may exacerbate cell death leading to SNHL. Phytochemicals have emerged as a possible solution because of the growing evidence of their anti-inflammatory, antioxidant, and anti-apoptotic properties. Ginseng and its bioactive molecules, ginsenosides, exhibit effects that suppress pro-inflammatory signaling and protect against apoptosis. In the current study, we investigated the effects of ginsenoside Rc (G-Rc) on UB/OC-2 primary murine sensory hair cell survival in response to palmitate-induced injury. G-Rc promoted UB/OC-2 cell survival and cell cycle progression. Additionally, G-Rc enhanced the differentiation of UB/OC-2 cells into functional sensory hair cells and alleviated palmitate-induced inflammation, endoplasmic reticulum stress, and apoptosis. The current study offers novel insights into the effects of G-Rc as a potential adjuvant for SNHL and warrants further studies elucidating the molecular mechanisms.


Asunto(s)
Ginsenósidos , Pérdida Auditiva Sensorineural , Panax , Humanos , Ratones , Animales , Ginsenósidos/farmacología , Panax/química , Cóclea , Inflamación
2.
Cell Commun Signal ; 20(1): 76, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637461

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is associated with a severe decline in kidney function caused by abnormalities within the podocytes' glomerular matrix. Recently, AKI has been linked to alterations in glycolysis and the activity of glycolytic enzymes, including pyruvate kinase M2 (PKM2). However, the contribution of this enzyme to AKI remains largely unexplored. METHODS: Cre-loxP technology was used to examine the effects of PKM2 specific deletion in podocytes on the activation status of key signaling pathways involved in the pathophysiology of AKI by lipopolysaccharides (LPS). In addition, we used lentiviral shRNA to generate murine podocytes deficient in PKM2 and investigated the molecular mechanisms mediating PKM2 actions in vitro. RESULTS: Specific PKM2 deletion in podocytes ameliorated LPS-induced protein excretion and alleviated LPS-induced alterations in blood urea nitrogen and serum albumin levels. In addition, PKM2 deletion in podocytes alleviated LPS-induced structural and morphological alterations to the tubules and to the brush borders. At the molecular level, PKM2 deficiency in podocytes suppressed LPS-induced inflammation and apoptosis. In vitro, PKM2 knockdown in murine podocytes diminished LPS-induced apoptosis. These effects were concomitant with a reduction in LPS-induced activation of ß-catenin and the loss of Wilms' Tumor 1 (WT1) and nephrin. Notably, the overexpression of a constitutively active mutant of ß-catenin abolished the protective effect of PKM2 knockdown. Conversely, PKM2 knockdown cells reconstituted with the phosphotyrosine binding-deficient PKM2 mutant (K433E) recapitulated the effect of PKM2 depletion on LPS-induced apoptosis, ß-catenin activation, and reduction in WT1 expression. CONCLUSIONS: Taken together, our data demonstrates that PKM2 plays a key role in podocyte injury and suggests that targetting PKM2 in podocytes could serve as a promising therapeutic strategy for AKI. TRIAL REGISTRATION: Not applicable. Video abstract.


Asunto(s)
Lesión Renal Aguda , Leucemia Mieloide Aguda , Podocitos , Lesión Renal Aguda/metabolismo , Animales , Leucemia Mieloide Aguda/metabolismo , Lipopolisacáridos/farmacología , Ratones , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/farmacología , beta Catenina/metabolismo
3.
Cell Commun Signal ; 18(1): 126, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795297

RESUMEN

BACKGROUND: Current pharmacological therapies and treatments targeting pancreatic neuroendocrine tumors (PNETs) have proven ineffective, far too often. Therefore, there is an urgent need for alternative therapeutic approaches. Zyflamend, a combination of anti-inflammatory herbal extracts, that has proven to be effective in various in vitro and in vivo cancer platforms, shows promise. However, its effects on pancreatic cancer, in particular, remain largely unexplored. METHODS: In the current study, we investigated the effects of Zyflamend on the survival of beta-TC-6 pancreatic insulinoma cells (ß-TC6) and conducted a detailed analysis of the underlying molecular mechanisms. RESULTS: Herein, we demonstrate that Zyflamend treatment decreased cell proliferation in a dose-dependent manner, concomitant with increased apoptotic cell death and cell cycle arrest at the G2/M phase. At the molecular level, treatment with Zyflamend led to the induction of ER stress, autophagy, and the activation of c-Jun N-terminal kinase (JNK) pathway. Notably, pharmacological inhibition of JNK abrogated the pro-apoptotic effects of Zyflamend. Furthermore, Zyflamend exacerbated the effects of streptozotocin and adriamycin-induced ER stress, autophagy, and apoptosis. CONCLUSION: The current study identifies Zyflamend as a potential novel adjuvant in the treatment of pancreatic cancer via modulation of the JNK pathway. Video abstract.


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inflamación/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Biológicos , Ratas , Estreptozocina/farmacología
4.
Microb Ecol ; 77(2): 523-536, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30033500

RESUMEN

The beef cattle industry represents a significant portion of the USA's agricultural sect, with beef cattle accounting for the most red meat consumed in the USA. Feed represents the largest input cost in the beef industry, accounting for approximately 70% of total input cost. Given that, novel methods need to be employed to optimize feed efficiency in cattle to reduce monetary cost as well as environmental cost associated with livestock industries, such as methane production and nitrogen release into the environment. The rumen microbiome contributes to feed efficiency by breaking down low-quality feedstuffs into energy substrates that can subsequently be utilized by the host animal. Attempts to manipulate the rumen microbiome have been met with mixed success, though persistent changes have not yet been achieved beyond changing diet. Recent technological advances have made analyzing host-wide effects of the rumen microbiome possible, as well as provided finer resolution of those effects. This manuscript reviews contributing factors to the rumen microbiome establishment or re-establishment following rumen microbiome perturbation, as well as host-microbiome interactions that may be responsible for possible host specificity of the rumen microbiome. Understanding and accounting for the variety of factors contributing to rumen microbiome establishment or re-establishment in cattle will ultimately lead to identification of biomarkers of feed efficiency that will result in improved selection criteria, as well as aid to determine methods for persistent microbiome manipulation to optimize production phenotypes.


Asunto(s)
Bacterias/aislamiento & purificación , Bovinos/microbiología , Microbioma Gastrointestinal , Alimentación Animal/análisis , Alimentación Animal/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bovinos/metabolismo , Rumen/metabolismo , Rumen/microbiología
5.
J Proteome Res ; 17(3): 1077-1090, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29373032

RESUMEN

Dietary intervention is commonly used for weight loss or to improve health, as diet-induced obesity increases the risk of developing type 2 diabetes, hypertension, cardiovascular disease, stroke, osteoarthritis, and certain cancers. Various dietary patterns are associated with effects on health, yet little is known about the effects of diet at the tissue level. Using untargeted metabolomics, this study aimed to identify changes in water-soluble metabolites in C57BL/6J males and females fed one of five diets (Japanese, ketogenic, Mediterranean, American, and standard mouse chow) for 7 months. Metabolite abundance was examined in liver, skeletal muscle, and adipose tissue for sex, diet, and sex-by-diet interaction. Analysis of variance (ANOVA) suggests that liver tissue has the most metabolic plasticity under dietary changes compared with adipose and skeletal muscle. The ketogenic diet was distinguishable from other diets for both males and females according to partial least-squares discriminant analysis. Pathway analysis revealed that the majority of pathways affected play an important role in amino acid metabolism in liver tissue. Not surprisingly, amino acid profiles were affected by dietary patterns in skeletal muscle. Few metabolites were significantly altered in adipose tissue relative to skeletal muscle and liver tissue, indicating that it was largely stable, regardless of diet alterations. The results of this study revealed that the ketogenic diet had the largest effect on physiology, particularly for females. Furthermore, metabolomics analysis revealed that diet affects metabolites in a tissue-specific manner and that liver was most sensitive to dietary changes.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta/clasificación , Hígado/metabolismo , Metaboloma , Músculo Esquelético/metabolismo , Análisis de Varianza , Animales , Dieta Alta en Grasa , Dieta Cetogénica , Dieta Mediterránea , Dieta Occidental , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Factores Sexuales
6.
Physiol Genomics ; 50(6): 468-477, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29625019

RESUMEN

To identify molecular pathways that couple metabolic imbalances and reproduction, we randomly assigned 10 castrated male sheep to be centrally injected into the lateral ventricle through intracerebroventricular cannulas with 1 ml of ß-hydroxybutyric acid sodium salt solution (BHB; 12,800 µmol/l) or saline solution (CON; 0.9% NaCl). Approximately 2 h postinjection, sheep were humanely euthanized, and hypothalamus and pituitary tissues were harvested for transcriptome characterization by RNA sequencing. RNA was extracted from the hypothalamus and pituitary and sequenced at a high depth (hypothalamus: 468,912,732 reads; pituitary: 515,106,092 reads) with the Illumina Hi-Seq 2500 platform and aligned to Bos taurus and Ovis aries genomes. Of the total raw reads, 87% (hypothalamus) and 90.5% (pituitary) mapped to the reference O. aries genome. Within these read sets, ~56% in hypothalamus and 69% in pituitary mapped to either known or putative protein coding genes. Fragments per kilobase of transcripts per million normalized counts were averaged and ranked to identify the transcript expression level. Gene Ontology analysis (DAVID Bioinformatics Resources) was utilized to identify biological process functions related to genes shared between tissues, as well as functional categories with tissue-specific enrichment. Between CON- and BHB-treated sheep, 11 and 44 genes were differentially expressed (adj. P < 0.05) within the pituitary and hypothalamus, respectively. Functional enrichment analyses revealed BHB altered expression of genes in pathways related to stimulus perception, inflammation, and cell cycle control. The set of genes altered by BHB creates a foundation from which to identify the signaling pathways that impact reproduction during metabolic imbalances.


Asunto(s)
Ácido 3-Hidroxibutírico/administración & dosificación , Ácido 3-Hidroxibutírico/farmacología , Castración , Perfilación de la Expresión Génica , Hipotálamo/metabolismo , Hipófisis/metabolismo , Reproducción/efectos de los fármacos , Ovinos/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Hipotálamo/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Metaboloma/efectos de los fármacos , Metabolómica , Hipófisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
7.
J Reprod Dev ; 64(3): 243-251, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29553057

RESUMEN

Hyperthermia during estrus has direct consequences on the maturing oocyte that carries over to the resultant embryo to compromise its ability to continue in development. Because early embryonic development is reliant upon maternal transcripts and other ooplasmic components, we examined impact of heat stress on bovine oocyte transcripts using microarray. Oocytes were matured at 38.5ºC for 24 h or 41.0ºC for the first 12 h of in vitro maturation; 38.5ºC thereafter. Transcriptome profile was performed on total (adenylated + deadenylated) RNA and polyadenylated mRNA populations. Heat stress exposure altered the abundance of several transcripts important for mitochondrial function. The extent to which transcript differences are coincident with functional changes was evaluated by examining reactive oxygen species, ATP content, and glutathione levels. Mitochondrial reactive oxygen species levels were increased by 6 h exposure to 41.0ºC while cytoplasmic levels were reduced compared to controls (P < 0.0001). Exposure to 41.0ºC for 12 h increased total and reduced glutathione levels in oocytes at 12 h but reduced them by 24 h (time × temperature P < 0.001). ATP content was higher in heat-stressed oocytes at 24 h (P < 0.0001). Heat-induced increases in ATP content of matured oocytes persisted in early cleavage-stage embryos (8- to 16-cell embryos; P < 0.05) but were no longer apparent in blastocysts (P > 0.05). Collectively, results indicate that direct exposure of maturing oocytes to heat stress may alter oocyte mitochondrial processes/function, which is inherited by the early embryo after fertilization.


Asunto(s)
Desarrollo Embrionario/fisiología , Mitocondrias/metabolismo , Oocitos/metabolismo , Estrés Fisiológico/fisiología , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Femenino , Fertilización In Vitro/veterinaria , Calor , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Fosforilación Oxidativa , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma
8.
Physiol Genomics ; 46(9): 315-27, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24550212

RESUMEN

Domestic broiler chickens rapidly accumulate fat and are naturally hyperglycemic and insulin resistant, making them an attractive model for studies of human obesity. We previously demonstrated that short-term (5 h) fasting rapidly upregulates pathways of fatty acid oxidation in broiler chickens and proposed that activation of these pathways may promote leanness. The objective of the current study was to characterize adipose tissue from relatively lean and fatty lines of chickens and determine if heritable leanness in chickens is associated with activation of some of the same pathways induced by fasting. We compared adipose gene expression and metabolite profiles in white adipose tissue of lean Leghorn and Fayoumi breeds to those of fattier commercial broiler chickens. Both lipolysis and expression of genes involved in fatty acid oxidation were upregulated in lean chickens compared with broilers. Although there were strong similarities between the lean lines compared with broilers, distinct expression signatures were also found between Fayoumi and Leghorn, including differences in adipogenic genes. Similarities between genetically lean and fasted chickens suggest that fatty acid oxidation in white adipose tissue is adaptively coupled to lipolysis and plays a role in heritable differences in fatness. Unique signatures of leanness in Fayoumi and Leghorn lines highlight distinct pathways that may provide insight into the basis for leanness in humans. Collectively, our results provide a number of future directions through which to fully exploit chickens as unique models for the study of human obesity and adipose metabolism.


Asunto(s)
Tejido Adiposo/metabolismo , Pollos , Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/fisiología , Modelos Animales , Delgadez/metabolismo , Delgadez/fisiopatología , Análisis de Varianza , Animales , Cromatografía Liquida , Ácidos Grasos/metabolismo , Técnicas Histológicas , Metabolismo , Metaboloma/fisiología , Oxidación-Reducción , Especificidad de la Especie , Espectrometría de Masas en Tándem
9.
Genome Res ; 21(8): 1223-38, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21734011

RESUMEN

Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity. All such populations may be subject to consequences of inbreeding depression. The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a randomized breeding design that systematically outcrosses eight founder strains, followed by inbreeding to obtain new recombinant inbred strains. Five of the eight founders are common laboratory strains, and three are wild-derived. Since its inception, the partially inbred CC has been characterized for physiological, morphological, and behavioral traits. The construction of this population provided a unique opportunity to observe phenotypic variation as new allelic combinations arose through intercrossing and inbreeding to create new stable genetic combinations. Processes including inbreeding depression and its impact on allelic and phenotypic diversity were assessed. Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both high founder genetic diversity and novel epistatic combinations. However, some focal evidence of allele purging was detected including a suggestive QTL for litter size in a location of changing allele frequency. Despite these inescapable pressures, high diversity and precision for genetic mapping remain. These results demonstrate the potential of the CC population once completed and highlight implications for development of related populations.


Asunto(s)
Cruzamientos Genéticos , Endogamia , Sitios de Carácter Cuantitativo , Animales , Femenino , Variación Genética , Genotipo , Tamaño de la Camada/genética , Masculino , Ratones , Ratones Endogámicos , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Front Physiol ; 15: 1458151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193441

RESUMEN

Genetic selection for high growth rate, breast muscle yield, and feed efficiency in modern broilers has been a double-edged sword. While it has resulted in marked benefits in production, it has also introduced widespread incidence of breast muscle myopathies. Broiler myopathies are phenotypically characterized by myodegeneration and fibrofatty infiltration, which compromise meat quality. These lesions resemble those of various myopathies found in humans, such as Duchenne muscular dystrophy, Limb-girdle muscular dystrophy, and sarcopenia. Fibroadipogenic progenitors (FAPs) are interstitial muscle-resident mesenchymal stem cells that are named because of their ability to differentiate into both fibroblasts and adipocytes. This cell population has clearly been established to play a role in the development and progression of myopathies in mice and humans. Gene expression studies of wooden breast and other related disorders have implicated FAPs in broilers, but to our knowledge this cell population have not been characterized in chickens. In this review, we summarize the evidence that FAPs may be a novel, new target for interventions that reduce the incidence and development of chicken breast muscle myopathies.

11.
Poult Sci ; 103(1): 103203, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37980759

RESUMEN

Breast muscle myopathies in broilers compromise meat quality and continue to plague the poultry industry. Broiler breast muscle myopathies are characterized by impaired satellite cell (SC)-mediated repair, and localized tissue hypoxia and dysregulation of oxygen homeostasis have been implicated as contributing factors. The present study was designed to test the hypothesis that hypoxia disrupts the ability of SC to differentiate and form myotubes, both of which are key components of myofiber repair, and to determine the extent to which effects are reversed by restoration of oxygen tension. Primary SC were isolated from pectoralis major of young (5 d) Cobb 700 chicks and maintained in growth conditions or induced to differentiate under normoxic (20% O2) or hypoxic (1% O2) conditions for up to 48 h. Hypoxia enhanced SC proliferation while inhibiting myogenic potential, with decreased fusion index and suppressed myotube formation. Reoxygenation after hypoxia partially reversed effects on both proliferation and myogenesis. Western blotting showed that hypoxia diminished myogenin expression, activated AMPK, upregulated proliferation markers, and increased molecular signaling of cellular stress. Hypoxia also promoted accumulation of lipid droplets in myotubes. Targeted RNAseq identified numerous differentially expressed genes across differentiation under hypoxia, including several genes that have been associated with myopathies in vivo. Altogether, these data demonstrate localized hypoxia may influence SC behavior in ways that disrupt muscle repair and promote the formation of myopathies in broilers.


Asunto(s)
Enfermedades Musculares , Células Satélite del Músculo Esquelético , Animales , Pollos , Diferenciación Celular , Hipoxia/veterinaria , Enfermedades Musculares/veterinaria , Enfermedades Musculares/metabolismo , Proliferación Celular , Células Satélite del Músculo Esquelético/metabolismo , Desarrollo de Músculos , Oxígeno/metabolismo , Músculo Esquelético/fisiología
12.
PLoS One ; 19(2): e0296407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422047

RESUMEN

To improve animal performance and modify growth by increasing lean tissue accretion, beef cattle production has relied on use of growth promoting technologies such as beta-adrenergic agonists. These synthetic catecholamines, combined with the variable inclusion of rumen degradable (RDP) and undegradable protein (RUP), improve feed efficiency and rate of gain in finishing beef cattle. However, research regarding the impact of beta-adrenergic agonists, protein level, and source on the ruminal microbiome is limited. The objective of this study was to determine the effect of different protein concentrations and beta-adrenergic agonist (ractopamine hydrochloride; RAC) on ruminal bacterial communities in finishing beef heifers. Heifers (n = 140) were ranked according to body weight and assigned to pens in a generalized complete block design with a 3 × 2 factorial arrangement of treatments of 6 different treatment combinations, containing 3 protein treatments (Control: 13.9% CP, 8.9% RDP, and 5.0% RUP; High RDP: 20.9% CP, 14.4% RDP, 6.5% RUP; or High RUP: 20.9% CP, 9.7% RDP, 11.2% RUP) and 2 RAC treatments (0 and 400 mg/day). Rumen samples were collected via orogastric tubing 7 days before harvest. DNA from rumen samples were sequenced to identify bacteria based on the V1-V3 hypervariable regions of the 16S rRNA gene. Reads from treatments were analyzed using the packages 'phyloseq' and 'dada2' within the R environment. Beta diversity was analyzed based on Bray-Curtis distances and was significantly different among protein and RAC treatments (P < 0.05). Alpha diversity metrics, such as Chao1 and Shannon diversity indices, were not significantly different (P > 0.05). Bacterial differences among treatments after analyses using PROC MIXED in SAS 9 were identified for the main effects of protein concentration (P < 0.05), rather than their interaction. These results suggest possible effects on microbial communities with different concentrations of protein but limited impact with RAC. However, both may potentially act synergistically to improve performance in finishing beef cattle.


Asunto(s)
Dieta , Digestión , Bovinos , Animales , Femenino , Dieta/veterinaria , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas en la Dieta/farmacología , Proteínas en la Dieta/metabolismo , Rumen/metabolismo , Bacterias/metabolismo , Agonistas Adrenérgicos beta/farmacología
13.
Vet Sci ; 10(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37756100

RESUMEN

Improving beef production efficiency, sustainability, and food security is crucial for meeting the growing global demand for beef while minimizing environmental impact, conserving resources, ensuring economic viability, and promoting animal welfare. Beta-adrenergic agonists and dietary protein have been critical factors in beef cattle production. Beta-agonists enhance growth, improve feed efficiency, and influence carcass composition, while dietary protein provides the necessary nutrients for muscle development and overall health. A balanced approach to their use and incorporation into cattle diets can lead to more efficient and sustainable beef production. However, microbiome technologies play an increasingly important role in beef cattle production, particularly by optimizing rumen fermentation, enhancing nutrient utilization, supporting gut health, and enhancing feed efficiency. Therefore, optimizing rumen fermentation, diet, and growth-promoting technologies has the potential to increase energy capture and improve performance. This review addresses the interactions among beta-adrenergic agonists, protein level and source, and the ruminal microbiome. By adopting innovative technologies, sustainable practices, and responsible management strategies, the beef industry can contribute to a more secure and sustainable food future. Continued research and development in this field can lead to innovative solutions that benefit both producers and the environment.

14.
Microorganisms ; 11(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985320

RESUMEN

The rumen is a complex organ that is critical for its host to convert low-quality feedstuffs into energy. The conversion of lignocellulosic biomass to volatile fatty acids and other end products is primarily driven by the rumen microbiome and its interaction with the host. Importantly, the rumen is demarcated into five distinct rumen sacs as a result of anatomical structure, resulting in variable physiology among the sacs. However, rumen nutritional and microbiome studies have historically focused on the bulk content or fluids sampled from single regions within the rumen. Examining the rumen microbiome from only one or two biogeographical regions is likely not sufficient to provide a comprehensive analysis of the rumen microbiome and its fermentative capacity. Rumen biogeography, digesta fraction, and microbial rumen-tissue association all impact the diversity and function of the entirety of the rumen microbiome. Therefore, this review discusses the importance of the rumen biographical regions and their contribution to microbiome variation.

15.
BMC Res Notes ; 16(1): 177, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596624

RESUMEN

Blood chemistry may provide indicators to greater feed efficient cattle. As a side objective to previous research, 17 Angus heifers approximately two years old underwent a feed efficiency trial to determine residual feed intake (RFI) and identify variation in blood chemistry in beef cattle divergent in feed efficiency. Heifers were categorized as high- or low-RFI based ± 0.25 standard deviations around mean RFI. Blood samples were analyzed using an i-STAT handheld blood analyzer to measure sodium, potassium, glucose, blood urea nitrogen (BUN), creatinine, hematocrit, and hemoglobin. BUN was greater in high-RFI heifers (µ = 8.7 mg/dL) contrasted to low-RFI heifers (µ = 6.5 mg/dL; P = 0.01), whereas glucose was greater in low-RFI heifers (µ = 78.1 mg/dL) contrasted to high-RFI heifers (µ = 82.0 mg/dL; P = 0.05). No other blood chemistry parameters differed by RFI. The greater abundance of BUN in high-RFI heifers may indicate inefficient utilization of protein or mobilization of tissue protein for non-protein use. Greater blood glucose concentrations in low-RFI heifers may indicate greater utilization of energy precursors, such as volatile fatty acids, or metabolites. These data suggest there are readily measurable indicators of physiological variation in nutrient utilization; however, this warrants additional studies to explore.


Asunto(s)
Ingestión de Alimentos , Glucosa , Bovinos , Animales , Femenino , Creatinina , Hematócrito , Nutrientes
16.
BMC Bioinformatics ; 13 Suppl 10: S7, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22759431

RESUMEN

BACKGROUND: A wealth of clustering algorithms has been applied to gene co-expression experiments. These algorithms cover a broad range of approaches, from conventional techniques such as k-means and hierarchical clustering, to graphical approaches such as k-clique communities, weighted gene co-expression networks (WGCNA) and paraclique. Comparison of these methods to evaluate their relative effectiveness provides guidance to algorithm selection, development and implementation. Most prior work on comparative clustering evaluation has focused on parametric methods. Graph theoretical methods are recent additions to the tool set for the global analysis and decomposition of microarray co-expression matrices that have not generally been included in earlier methodological comparisons. In the present study, a variety of parametric and graph theoretical clustering algorithms are compared using well-characterized transcriptomic data at a genome scale from Saccharomyces cerevisiae. METHODS: For each clustering method under study, a variety of parameters were tested. Jaccard similarity was used to measure each cluster's agreement with every GO and KEGG annotation set, and the highest Jaccard score was assigned to the cluster. Clusters were grouped into small, medium, and large bins, and the Jaccard score of the top five scoring clusters in each bin were averaged and reported as the best average top 5 (BAT5) score for the particular method. RESULTS: Clusters produced by each method were evaluated based upon the positive match to known pathways. This produces a readily interpretable ranking of the relative effectiveness of clustering on the genes. Methods were also tested to determine whether they were able to identify clusters consistent with those identified by other clustering methods. CONCLUSIONS: Validation of clusters against known gene classifications demonstrate that for this data, graph-based techniques outperform conventional clustering approaches, suggesting that further development and application of combinatorial strategies is warranted.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Análisis por Conglomerados , Genoma Fúngico , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Saccharomyces cerevisiae/genética
17.
BMC Genomics ; 13: 441, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22938590

RESUMEN

BACKGROUND: Domestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens. RESULTS: We combined transcriptomics and metabolomics to characterize the response of chicken adipose tissue to two energy manipulations, fasting and insulin deprivation in the fed state. Sixteen to 17 day-old commercial broiler chickens (ISA915) were fed ad libitum, fasted for five hours, or fed but deprived of insulin by injections of anti-insulin serum. Pair-wise contrasts of expression data identified a total of 2016 genes that were differentially expressed after correction for multiple testing, with the vast majority of differences due to fasting (1780 genes). Gene Ontology and KEGG pathway analyses indicated that a short term fast impacted expression of genes in a broad selection of pathways related to metabolism, signaling and adipogenesis. The effects of insulin neutralization largely overlapped with the response to fasting, but with more modest effects on adipose tissue metabolism. Tissue metabolomics indicated unique effects of insulin on amino acid metabolism. CONCLUSIONS: Collectively, these data provide a foundation for further study into the molecular basis for adipose expansion in commercial poultry and identify potential pathways through which fat accretion may be attenuated in the future through genetic selection or management practices. They also highlight chicken as a useful model organism in which to study the dynamic relationship between food intake, metabolism, and adipose tissue biology.


Asunto(s)
Tejido Adiposo/metabolismo , Ayuno , Perfilación de la Expresión Génica , Insulina/metabolismo , Metaboloma , Adipogénesis/genética , Animales , Anticuerpos/inmunología , Pollos/genética , Pollos/metabolismo , Análisis por Conglomerados , Bases de Datos Genéticas , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Masculino
18.
Gen Comp Endocrinol ; 176(1): 86-93, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22233773

RESUMEN

The role of insulin in chicken adipose tissue appears weak or questionable. In a first study, proximal and distal components of the insulin signaling cascade were characterized in abdominal adipose tissue of fasted or fed chickens for the first time. Similar measurements were performed on epididymal adipose tissue from fasted or fed rats for comparison. Tyrosine phosphorylation of IR beta subunit, IRS-1 and Shc and phosphorylation of downstream components (Akt and MAPK ERK1/2) were significantly reduced as expected by fasting in rat, but not in chicken. Phosphorylation of MAPK P38 was increased by fasting in chicken but not in rat. Phosphorylation of AMPK was not affected in the conditions investigated in either species. Whatever the nutritional state, the protein levels of IR and IRS-1 were lower in chicken than in rat, whereas those of Shc, Akt, AMPK, MAPK ERK2 and MAPK P38 were similar in both species. In fed state, PI3K activity was higher in chicken than in rat. Insulin sensitivity of insulin cascade was further investigated in chicken adipose tissue following in vivo insulin neutralization for 1 or 5h in fed chickens. Insulin privation did not alter early insulin signaling steps (IRß, IRS-1 and Shc) or downstream elements (Akt, P70S6K, S6 ribosomal protein, AMPK, MAPK ERK2 and MAPK P38). Finally, phosphorylation of the transcription factor Creb was increased by 2-fold by 5h fasting or 5h insulin privation, most likely in response to an increase in plasma glucagon levels. Thus, insulin signaling is markedly different in chicken abdominal adipose tissue from that operating in mammals making chicken an interesting model of insulin resistance or refractoriness.


Asunto(s)
Grasa Abdominal/metabolismo , Pollos/metabolismo , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ayuno/fisiología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptor de Insulina/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
J Vis Exp ; (186)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993709

RESUMEN

Primary preadipocytes are a valuable experimental system for understanding the molecular pathways that control adipocyte differentiation and metabolism. Chicken embryos provide the opportunity to isolate preadipocytes from the earliest stage of adipose development. This primary cell can be used to identify factors influencing preadipocyte proliferation and adipogenic differentiation, making them a valuable model for studies related to childhood obesity and control of excess fat deposition in poultry. The rapid growth of postnatal adipose tissue effectively wastes feed by allocating it away from muscle growth in broiler chickens. Therefore, methods to understand the earliest stages of adipose tissue development may provide clues to regulate this tendency and identify ways to limit adipose expansion early in life. The present study was designed to develop an efficient method for isolation, primary culture, and adipogenic differentiation of preadipocytes isolated from developing adipose tissue of commercial broiler (meat-type) chick embryos. The procedure has been optimized to yield cells with high viability (~98%) and increased capacity to differentiate into mature adipocytes. This simple method of embryonic preadipocyte isolation, culture, and differentiation supports functional analyses of fat growth and development in early life.


Asunto(s)
Adipocitos , Obesidad Infantil , Adipogénesis , Tejido Adiposo , Animales , Diferenciación Celular , Embrión de Pollo , Pollos/metabolismo
20.
J Anim Sci ; 100(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36271876

RESUMEN

Development and maintenance of healthy muscle fibers rely on the myogenic potential of satellite cells (SC), muscle stem cells that proliferate and differentiate to form myotubes. Satellite cells are indispensable for post-hatch muscle growth as well as muscle repair and regeneration when myofibers are damaged. Pectoralis major of young broiler chicks (5-d olds) is a readily available source of SC, which can be used in vitro to elucidate cellular and molecular mechanisms responsible for muscle growth and regeneration in broilers. Here, we optimized a method for efficient isolation, purification, and differentiation of SC, from young broiler chicks. This procedure includes a simple method that allows SC to be purified from other muscle cell types that can impede the fidelity of follow-on experiments, particularly highly sensitive measures such as RNAseq. The methods for culturing and differentiating SC into multinucleated myotubes were also optimized by testing serum types, concentrations, and the effects of chicken embryo extract. Using the isolation procedure, a highly pure SC population (94.6 ± 2.11% Pax7+) with high viability and yield was obtained, and their capacity to differentiate into myotubes was confirmed. Enrichment for SC and myogenic capacity were maintained through multiple passages and after cryopreservation. Analysis of gene expression over the first 48 h of differentiation confirmed that SC exhibited the expected molecular signature of myogenesis. Taken together, this method simplifies the ability to isolate and maintain a relatively pure population of SC with strong myogenic potential from young broiler chicks, and should support downstream applications for assessing the impact of nutrients, metabolites, and other physiological cues on muscle growth and development in broilers.


The purpose of this study is to optimize the isolation and culture method for muscle stem cells, called satellite cells, in the breast muscle of meat-type chicken (Broiler). Satellite cells play pivotal roles in muscle development, growth, and muscle regeneration. One challenge of primary cell isolation is efficient and effective purification from a mixture of cell types, while maintaining viability and achieving high yield. Here, we developed a protocol enabling high yield and purity of primary satellite cells isolation and optimized culture conditions. We obtained about 95% purified satellite cells with high viability, and this method is simple and cost-effective compared to alternative cell sorting techniques that require cell-labeling steps and expensive equipment. Thus, this optimized satellite cell isolation and culture may be valuable for in vitro studies of cellular and molecular mechanisms responsible for muscle diseases (e.g., white striping and wooden breast) and the nutritional regulation of muscle development in broiler.


Asunto(s)
Pollos , Células Satélite del Músculo Esquelético , Animales , Embrión de Pollo , Pollos/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Músculos Pectorales , Diferenciación Celular , Músculo Esquelético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA