Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am Nat ; 204(3): 201-220, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39179235

RESUMEN

AbstractRepeatable macroevolutionary patterns provide hope for rules in biology, especially when we can decipher the underlying mechanisms. Here we synthesize natural history, genetic adaptations, and toxin sequestration in herbivorous insects that specialize on plants with cardiac glycoside defenses. Work on the monarch butterfly provided a model for evolution of the "sequestering specialist syndrome," where specific amino acid substitutions in the insect's Na+/K+-ATPase are associated with (1) high toxin resistance (target site insensitivity [TSI]), (2) sequestration of toxins, and (3) aposematic coloration. We evaluate convergence for these traits within and between Lepidoptera, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Orthoptera, encompassing hundreds of toxin-adapted species. Using new and existing data on ∼28 origins of specialization, we show that the monarch model evolved independently in five taxonomic orders (but not Diptera). An additional syndrome occurs in five orders (all but Hymenoptera): aposematic sequesterers with modest to medium TSI. Indeed, all sequestering species were aposematic, and all but one had at least modest TSI. Additionally, several species were aposematic nonsequesterers (potential Batesian mimics), and this combination evolved in species with a range of TSI levels. Finally, we identified some biases among these strategies within taxonomic orders. Biodiversity in this microcosm of life evolved repeatedly with a high degree of similarity across six taxonomic orders, yet we identified alternative trait combinations as well as lineage-specific outcomes.


Asunto(s)
Evolución Biológica , Cardenólidos , Herbivoria , Insectos , Animales , Insectos/genética , Cardenólidos/metabolismo
2.
Mol Ecol ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296537

RESUMEN

Cardiac glycosides are chemical defence toxins known to fatally inhibit the Na,K-ATPase (NKA) throughout the animal kingdom. Several animals, however, have evolved target-site insensitivity through substitutions in the otherwise highly conserved cardiac glycoside binding pocket of the NKA. The large milkweed bug, Oncopeltus fasciatus, shares a long evolutionary history with cardiac glycoside containing plants that led to intricate adaptations. Most strikingly, several duplications of the bugs' NKA1α gene provided the opportunity for differential resistance-conferring substitutions and subsequent sub-functionalization of the enzymes. Here, we analysed cardiac glycoside resistance and ion pumping activity of nine functional NKA α/ß-combinations of O. fasciatus expressed in cell culture. We tested the enzymes with two structurally distinct cardiac glycosides, calotropin, a host plant compound, and ouabain, a standard cardiac glycoside. The identity and number of known resistance-conferring substitutions in the cardiac glycoside binding site significantly impacted activity and toxin resistance in the three α-subunits. The ß-subunits also influenced the enzymes' characteristics, yet to a lesser extent. Enzymes containing the more ancient αC-subunit were inhibited by both compounds but much more strongly by the host plant toxin calotropin than by ouabain. The sensitivity to calotropin was diminished in enzymes containing the more derived αB and αA, which were only marginally inhibited by both cardiac glycosides. This trend culminated in αAß1 having higher resistance against calotropin than against ouabain. These results support the coevolutionary escalation of plant defences and herbivore tolerance mechanisms. The possession of multiple paralogs additionally mitigates pleiotropic effects by compromising between ion pumping activity and resistance.

3.
Proc Biol Sci ; 286(1908): 20190883, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31387508

RESUMEN

Evolution of insensitivity to the toxic effects of cardiac glycosides has become a model in the study of convergent evolution, as five taxonomic orders of insects use the same few similar amino acid substitutions in the otherwise highly conserved Na,K-ATPase α. We show here that insensitivity in pyrgomorphid grasshoppers evolved along a slightly divergent path. As in other lineages, duplication of the Na,K-ATPase α gene paved the way for subfunctionalization: one copy maintains the ancestral, sensitive state, while the other copy is resistant. Nonetheless, in contrast with all other investigated insects, the grasshoppers' resistant copy shows length variation by two amino acids in the first extracellular loop, the main part of the cardiac glycoside-binding pocket. RT-qPCR analyses confirmed that this copy is predominantly expressed in tissues exposed to the toxins, while the ancestral copy predominates in the nervous tissue. Functional tests with genetically engineered Drosophila Na,K-ATPases bearing the first extracellular loop of the pyrgomorphid genes showed the derived form to be highly resistant, while the ancestral state is sensitive. Thus, we report convergence in gene duplication and in the gene targets for toxin insensitivity; however, the means to the phenotypic end have been novel in pyrgomorphid grasshoppers.


Asunto(s)
Glicósidos Cardíacos/metabolismo , Evolución Molecular , Saltamontes/fisiología , Proteínas de Insectos/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Toxinas Biológicas/metabolismo , Aclimatación , Adaptación Biológica , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Saltamontes/genética , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Filogenia , Alineación de Secuencia , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
4.
Am Nat ; 190(S1): S29-S43, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28731826

RESUMEN

Natural selection imposed by natural toxins has led to striking levels of convergent evolution at the molecular level. Cardiac glycosides represent a group of plant toxins that block the Na,K-ATPase, a vital membrane protein in animals. Several herbivorous insects have convergently evolved resistant Na,K-ATPases, and in some species, convergent gene duplications have also arisen, likely to cope with pleiotropic costs of resistance. To understand the genetic basis and predictability of these adaptations, we studied five independent lineages of leaf-mining flies (Diptera: Agromyzidae). These flies have colonized host plants in four botanical families that convergently evolved cardiac glycosides of two structural types: cardenolides and bufadienolides. We compared each of six fly species feeding on such plants to a phylogenetically related but nonadapted species. Irrespective of the type of cardiac glycoside in the host plant, five out of six exposed species displayed substitutions in the cardiac glycoside-binding site of the Na,K-ATPase that were previously described in other insect orders; in only one species was the gene duplicated. In vitro assays of nervous tissue extractions confirmed that the substitutions lead to increased resistance of the Na,K-ATPase. Our results demonstrate that target site insensitivity of Na,K-ATPase is a common response to dietary cardiac glycosides leading to highly predictable amino acid changes; nonetheless, convergent evolution of gene duplication for this multifunctional enzyme appears more constrained.


Asunto(s)
Evolución Molecular , Insectos , ATPasa Intercambiadora de Sodio-Potasio/genética , Animales , Cardenólidos , Duplicación de Gen , Plantas/química
5.
Proc Natl Acad Sci U S A ; 109(32): 13040-5, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22826239

RESUMEN

The extent of convergent molecular evolution is largely unknown, yet is critical to understanding the genetics of adaptation. Target site insensitivity to cardenolides is a prime candidate for studying molecular convergence because herbivores in six orders of insects have specialized on these plant poisons, which gain their toxicity by blocking an essential transmembrane carrier, the sodium pump (Na,K-ATPase). We investigated gene sequences of the Na,K-ATPase α-subunit in 18 insects feeding on cardenolide-containing plants (spanning 15 genera and four orders) to screen for amino acid substitutions that might lower sensitivity to cardenolides. The replacement N122H that was previously shown to confer resistance in the monarch butterfly (Danaus plexippus) and Chrysochus leaf beetles was found in four additional species, Oncopeltus fasciatus and Lygaeus kalmii (Heteroptera, Lygaeidae), Labidomera clivicollis (Coleoptera, Chrysomelidae), and Liriomyza asclepiadis (Diptera, Agromyzidae). Thus, across 300 Myr of insect divergence, specialization on cardenolide-containing plants resulted in molecular convergence for an adaptation likely involved in coevolution. Our screen revealed a number of other substitutions connected to cardenolide binding in mammals. We confirmed that some of the particular substitutions provide resistance to cardenolides by introducing five distinct constructs of the Drosophila melanogaster gene into susceptible eucaryotic cells under an ouabain selection regime. These functional assays demonstrate that combined substitutions of Q(111) and N(122) are synergistic, with greater than twofold higher resistance than either substitution alone and >12-fold resistance over the wild type. Thus, even across deep phylogenetic branches, evolutionary degrees of freedom seem to be limited by physiological constraints, such that the same molecular substitutions confer adaptation.


Asunto(s)
Adaptación Biológica/genética , Cardenólidos/toxicidad , Resistencia a Medicamentos/genética , Evolución Molecular , Insectos/genética , Modelos Moleculares , ATPasa Intercambiadora de Sodio-Potasio/genética , Adaptación Biológica/fisiología , Secuencia de Aminoácidos , Análisis de Varianza , Animales , Secuencia de Bases , Cardenólidos/química , Biología Computacional , Cartilla de ADN/genética , Datos de Secuencia Molecular , Mutación Missense/genética , América del Norte , Filogenia , Análisis de Secuencia de ADN , ATPasa Intercambiadora de Sodio-Potasio/química , Especificidad de la Especie
6.
Proc Biol Sci ; 280(1759): 20123089, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23516239

RESUMEN

Because cardenolides specifically inhibit the Na(+)K(+)-ATPase, insects feeding on cardenolide-containing plants need to circumvent this toxic effect. Some insects such as the monarch butterfly rely on target site insensitivity, yet other cardenolide-adapted lepidopterans such as the oleander hawk-moth, Daphnis nerii, possess highly sensitive Na(+)K(+)-ATPases. Nevertheless, larvae of this species and the related Manduca sexta are insensitive to injected cardenolides. By radioactive-binding assays with nerve cords of both species, we demonstrate that the perineurium surrounding the nervous tissue functions as a diffusion barrier for a polar cardenolide (ouabain). By contrast, for non-polar cardenolides such as digoxin an active efflux carrier limits the access to the nerve cord. This barrier can be abolished by metabolic inhibitors and by verapamil, a specific inhibitor of P-glycoproteins (PGPs). This supports that a PGP-like transporter is involved in the active cardenolide-barrier of the perineurium. Tissue specific RT-PCR demonstrated expression of three PGP-like genes in hornworm nerve cords, and immunohistochemistry further corroborated PGP expression in the perineurium. Our results thus suggest that the lepidopteran perineurium serves as a diffusion barrier for polar cardenolides and provides an active barrier for non-polar cardenolides. This may explain the high in vivo resistance to cardenolides observed in some lepidopteran larvae, despite their highly sensitive Na(+)K(+)-ATPases.


Asunto(s)
Digoxina/metabolismo , Mariposas Nocturnas/fisiología , Neurotoxinas/metabolismo , Ouabaína/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cadena Alimentaria , Hemolinfa/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Nerium/química , Nervios Periféricos/fisiología , Permeabilidad , Reacción en Cadena de la Polimerasa , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Especificidad de la Especie
7.
Evolution ; 67(9): 2753-61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24033181

RESUMEN

Despite the monarch butterfly (Danaus plexippus) being famous for its adaptations to the defensive traits of its milkweed host plants, little is known about the macroevolution of these traits. Unlike most other animal species, monarchs are largely insensitive to cardenolides, because their target site, the sodium pump (Na(+)/K(+) -ATPase), has evolved amino acid substitutions that reduce cardenolide binding (so-called target site insensitivity, TSI). Because many, but not all, species of milkweed butterflies (Danaini) are associated with cardenolide-containing host plants, we analyzed 16 species, representing all phylogenetic lineages of milkweed butterflies, for the occurrence of TSI by sequence analyses of the Na(+)/K(+) -ATPase gene and by enzymatic assays with extracted Na(+)/K(+) -ATPase. Here we report that sensitivity to cardenolides was reduced in a stepwise manner during the macroevolution of milkweed butterflies. Strikingly, not all Danaini typically consuming cardenolides showed TSI, but rather TSI was more strongly associated with sequestration of toxic cardenolides. Thus, the interplay between bottom-up selection by plant compounds and top-down selection by natural enemies can explain the evolutionary sequence of adaptations to these toxins.


Asunto(s)
Mariposas Diurnas/genética , Cardenólidos/toxicidad , Evolución Molecular , Proteínas de Insectos/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Sustitución de Aminoácidos , Animales , Asclepias/química , Asclepias/parasitología , Mariposas Diurnas/efectos de los fármacos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA