Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Osteoarthritis Cartilage ; 32(10): 1261-1272, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38806070

RESUMEN

OBJECTIVE: We aimed to characterize calcium-containing crystals present in synovial fluid from patients with knee osteoarthritis (OA) using Raman spectroscopy, and specifically investigate the biological effects of calcite crystals. DESIGN: Thirty-two synovial fluid samples were collected pre-operatively from knee OA patients undergoing total joint arthroplasty. An integrated Raman polarized light microscope was used for identification of crystals in synovial fluid. Human peripheral blood mononuclear cells (PBMC's), human OA articular chondrocytes (HACs) and fibroblast-like synoviocytes (FLSs) were exposed to calcite crystals. Expression of relevant cytokines and inflammatory genes were measured using enzyme-linked immuno sorbent assay (ELISA) and real-time polymerase chain reaction (PCR). RESULTS: Various calcium-containing crystals were identified, including calcium pyrophosphate (37.5 %) and basic calcium phosphate (21.8 %), but they were never found simultaneously in the same OA synovial fluid sample. For the first time, we discovered the presence of calcite crystals in 93.8 % of the samples, while dolomite was detected in 25 % of the cases. Characterization of the cellular response to calcite crystal exposure revealed increased production of innate immune-derived cytokines by PBMC's, when co-stimulated with lipopolysaccharide (LPS). Additionally, calcite crystal stimulation of HACs and FLSs resulted in enhanced secretion of pro-inflammatory molecules and alterations in the expression of extracellular matrix remodeling enzymes. CONCLUSIONS: This study highlights the unique role of Raman spectroscopy in OA crystal research and identified calcite as a novel pro-inflammatory crystal type in OA synovial fluid. Understanding the role of specific crystal species in the OA joint may open new avenues for pharmacological interventions and personalized approaches to treating OA.


Asunto(s)
Carbonato de Calcio , Osteoartritis de la Rodilla , Espectrometría Raman , Líquido Sinovial , Humanos , Líquido Sinovial/metabolismo , Osteoartritis de la Rodilla/metabolismo , Anciano , Masculino , Femenino , Pirofosfato de Calcio/metabolismo , Citocinas/metabolismo , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Fosfatos de Calcio/farmacología , Persona de Mediana Edad , Sinoviocitos/metabolismo , Sinoviocitos/efectos de los fármacos , Cristalización , Anciano de 80 o más Años
2.
Artículo en Inglés | MEDLINE | ID: mdl-39222431

RESUMEN

OBJECTIVE: Raman spectroscopy is proposed as a next-generation method for the identification of monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals in synovial fluid. As the interpretation of Raman spectra requires specific expertise, the method is not directly applicable for clinicians. We developed an approach to demonstrate that the identification process can be automated with the use of machine learning techniques. The developed system is tested in a point-of-care-setting at our outpatient rheumatology department. METHODS: We collected synovial fluid samples from 446 patients with various rheumatic diseases from three centra. We analyzed all samples with our Raman spectroscope and used 246 samples for training and 200 samples for validation. Trained observers classified every Raman spectrum as MSU, CPP or else. We designed two one-against-all classifiers, one for MSU and one for CPP. These classifiers consisted of a principal component analysis model followed by a support vector machine. RESULTS: The accuracy for classification of CPP using the 2023 ACR/EULAR CPPD classification criteria was 96.0% (95% CI 92.3-98.3), while the accuracy for classification of MSU with using the 2015 ACR/EULAR gout classification criteria was 92.5% (95% CI 87.9-95.7). Overall, the accuracy for classification of pathological crystals was 88.0% (95% CI 82.7-92.2). The model was able to discriminate between pathologic crystals, artifacts, and other particles such as microplastics. CONCLUSION: We here demonstrate that potentially complex Raman spectra from clinical patient samples can be successfully classified by a machine learning approach, resulting in an objective diagnosis independent of the opinion of the medical examiner.

3.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732249

RESUMEN

Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-ß2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-ß2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-ß2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-ß2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-ß2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-ß2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.


Asunto(s)
Condrocitos , Biosíntesis de Proteínas , ARN Ribosómico , Ribosomas , Factor de Crecimiento Transformador beta2 , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Ribosomas/metabolismo , Humanos , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Sitios Internos de Entrada al Ribosoma , Línea Celular
4.
BMC Biol ; 20(1): 253, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352408

RESUMEN

BACKGROUND: Without the availability of disease-modifying drugs, there is an unmet therapeutic need for osteoarthritic patients. During osteoarthritis, the homeostasis of articular chondrocytes is dysregulated and a phenotypical transition called hypertrophy occurs, leading to cartilage degeneration. Targeting this phenotypic transition has emerged as a potential therapeutic strategy. Chondrocyte phenotype maintenance and switch are controlled by an intricate network of intracellular factors, each influenced by a myriad of feedback mechanisms, making it challenging to intuitively predict treatment outcomes, while in silico modeling can help unravel that complexity. In this study, we aim to develop a virtual articular chondrocyte to guide experiments in order to rationalize the identification of potential drug targets via screening of combination therapies through computational modeling and simulations. RESULTS: We developed a signal transduction network model using knowledge-based and data-driven (machine learning) modeling technologies. The in silico high-throughput screening of (pairwise) perturbations operated with that network model highlighted conditions potentially affecting the hypertrophic switch. A selection of promising combinations was further tested in a murine cell line and primary human chondrocytes, which notably highlighted a previously unreported synergistic effect between the protein kinase A and the fibroblast growth factor receptor 1. CONCLUSIONS: Here, we provide a virtual articular chondrocyte in the form of a signal transduction interactive knowledge base and of an executable computational model. Our in silico-in vitro strategy opens new routes for developing osteoarthritis targeting therapies by refining the early stages of drug target discovery.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratones , Animales , Cartílago Articular/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Osteoartritis/metabolismo , Condrocitos/metabolismo , Hipertrofia/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628759

RESUMEN

Eukaryotic ribosomes are complex molecular nanomachines translating genetic information from mRNAs into proteins. There is natural heterogeneity in ribosome composition. The pseudouridylation (ψ) of ribosomal RNAs (rRNAs) is one of the key sources of ribosome heterogeneity. Nevertheless, the functional consequences of ψ-based ribosome heterogeneity and its relevance for human disease are yet to be understood. Using HydraPsiSeq and a chronic disease model of non-osteoarthritic primary human articular chondrocytes exposed to osteoarthritic synovial fluid, we demonstrated that the disease microenvironment is capable of instigating site-specific changes in rRNA ψ profiles. To investigate one of the identified differential rRNA ψ sites (28S-ψ4966), we generated SNORA22 and SNORA33 KO SW1353 cell pools using LentiCRISPRv2/Cas9 and evaluated the ribosome translational capacity by 35S-Met/Cys incorporation, assessed the mode of translation initiation and ribosomal fidelity using dual luciferase reporters, and assessed cellular and ribosomal proteomes by LC-MS/MS. We uncovered that the depletion of SNORA33, but not SNORA22, reduced 28S-ψ4966 levels. The resulting loss of 28S-ψ4966 affected ribosomal protein composition and function and led to specific changes in the cellular proteome. Overall, our pioneering findings demonstrate that cells dynamically respond to disease-relevant changes in their environment by altering their rRNA pseudouridylation profiles, with consequences for ribosome function and the cellular proteome relevant to human disease.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Proteoma/genética , Ribosomas/genética , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética
6.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37834337

RESUMEN

Extracellular vesicles (EVs) contribute to osteoarthritis pathogenesis through their release into joint tissues and synovial fluid. Synovial fluid-derived EVs have the potential to be direct biomarkers in the causal pathway of disease but also enable understanding of their role in disease progression. Utilizing a temporal model of osteoarthritis, we defined the changes in matched synovial fluid and plasma-derived EV small non-coding RNA and protein cargo using sequencing and mass spectrometry. Data exploration included time series clustering, factor analysis and gene enrichment interrogation. Chondrocyte signalling was analysed using luciferase-based transcription factor activity assays. EV protein cargo appears to be more important during osteoarthritis progression than small non-coding RNAs. Cluster analysis revealed plasma-EVs represented a time-dependent response to osteoarthritis induction associated with supramolecular complexes. Clusters for synovial fluid-derived EVs were associated with initial osteoarthritis response and represented immune/inflammatory pathways. Factor analysis for plasma-derived EVs correlated with day post-induction and were primarily composed of proteins modulating lipid metabolism. Synovial fluid-derived EVs factors represented intermediate filament and supramolecular complexes reflecting tissue repair. There was a significant interaction between time and osteoarthritis for CRE, NFkB, SRE, SRF with a trend for osteoarthritis synovial fluid-derived EVs at later time points to have a more pronounced effect.


Asunto(s)
Vesículas Extracelulares , Osteoartritis , Animales , Caballos , Líquido Sinovial/metabolismo , Multiómica , Osteoartritis/metabolismo , Vesículas Extracelulares/metabolismo , Modelos Teóricos
7.
Curr Opin Rheumatol ; 34(1): 61-67, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34750309

RESUMEN

PURPOSE OF REVIEW: Translation of genetic information encoded within mRNA molecules by ribosomes into proteins is a key part of the central dogma of molecular biology. Despite the central position of the ribosome in the translation of proteins, and considering the major proteomic changes that occur in the joint during osteoarthritis development and progression, the ribosome has received very limited attention as driver of osteoarthritis pathogenesis. RECENT FINDINGS: We provide an overview of the limited literature regarding this developing topic for the osteoarthritis field. Recent key findings that connect ribosome biogenesis and activity with osteoarthritis include: ribosomal RNA transcription, processing and maturation, ribosomal protein expression, protein translation capacity and preferential translation. SUMMARY: The ribosome as the central cellular protein synthesis hub is largely neglected in osteoarthritis research. Findings included in this review reveal that in osteoarthritis, ribosome aberrations have been found from early-stage ribosome biogenesis, through ribosome build-up and maturation, up to preferential translation. Classically, osteoarthritis has been explained as an imbalance between joint tissue anabolism and catabolism. We postulate that osteoarthritis can be interpreted as an acquired ribosomopathy. This hypothesis fine-tunes the dogmatic anabolism/katabolism point-of-view, and may provide novel molecular opportunities for the development of osteoarthritis disease-modifying treatments.


Asunto(s)
Osteoartritis , Proteómica , Humanos , Osteoartritis/genética , ARN Ribosómico , Proteínas Ribosómicas/genética , Ribosomas/genética
8.
Nephrol Dial Transplant ; 37(4): 652-662, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-34718756

RESUMEN

BACKGROUND: Hyperphosphataemia is strongly associated with cardiovascular disease and mortality. Recently, phosphate binders (PBs), which are used to bind intestinal phosphate, have been shown to bind vitamin K, thereby potentially aggravating vitamin K deficiency. This vitamin K binding by PBs may offset the beneficial effects of phosphate reduction in reducing vascular calcification (VC). Here we assessed whether combining PBs with vitamin K2 supplementation inhibits VC. METHODS: We performed 3/4 nephrectomy in rats, after which warfarin was given for 3 weeks to induce vitamin K deficiency. Next, animals were fed a high phosphate diet in the presence of low or high vitamin K2 and were randomized to either control or one of four different PBs for 8 weeks. The primary outcome was the amount of thoracic and abdominal aorta VC measured by high-resolution micro-computed tomography (µCT). Vitamin K status was measured by plasma MK7 levels and immunohistochemically analysed in vasculature using uncarboxylated matrix Gla protein (ucMGP) specific antibodies. RESULTS: The combination of a high vitamin K2 diet and PB treatment significantly reduced VC as measured by µCT for both the thoracic (P = 0.026) and abdominal aorta (P = 0.023), compared with MK7 or PB treatment alone. UcMGP stain was significantly more present in the low vitamin K2-treated groups in both the thoracic (P < 0.01) and abdominal aorta (P < 0.01) as compared with high vitamin K2-treated groups. Moreover, a high vitamin K diet and PBs led to reduced vascular oxidative stress. CONCLUSION: In an animal model of kidney failure with vitamin K deficiency, neither PB therapy nor vitamin K2 supplementation alone prevented VC. However, the combination of high vitamin K2 with PB treatment significantly attenuated VC.


Asunto(s)
Insuficiencia Renal , Calcificación Vascular , Deficiencia de Vitamina K , Animales , Femenino , Masculino , Ratas , Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular , Modelos Animales , Fosfatos , Diálisis Renal , Insuficiencia Renal/complicaciones , Calcificación Vascular/etiología , Calcificación Vascular/prevención & control , Vitamina K , Vitamina K 1/uso terapéutico , Vitamina K 2/farmacología , Vitamina K 2/uso terapéutico , Deficiencia de Vitamina K/complicaciones , Deficiencia de Vitamina K/tratamiento farmacológico , Microtomografía por Rayos X
9.
BMC Vet Res ; 17(1): 26, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422071

RESUMEN

BACKGROUND: Osteoarthritis remains one of the greatest causes of morbidity and mortality in the equine population. The inability to detect pre-clinical changes in osteoarthritis has been a significant impediment to the development of effective therapies against this disease. Synovial fluid represents a potential source of disease-specific small non-coding RNAs (sncRNAs) that could aid in the understanding of the pathogenesis of osteoarthritis. We hypothesised that early stages of osteoarthritis would alter the expression of sncRNAs, facilitating the understanding of the underlying pathogenesis and potentially provide early biomarkers. METHODS: Small RNA sequencing was performed using synovial fluid from the metacarpophalangeal joints of both control and early osteoarthritic horses. A group of differentially expressed sncRNAs was selected for further validation through qRT-PCR using an independent cohort of synovial fluid samples from control and early osteoarthritic horses. Bioinformatic analysis was performed in order to identify putative targets of the differentially expressed microRNAs and to explore potential associations with specific biological processes. RESULTS: Results revealed 22 differentially expressed sncRNAs including 13 microRNAs; miR-10a, miR-223, let7a, miR-99a, miR-23b, miR-378, miR-143 (and six novel microRNAs), four small nuclear RNAs; U2, U5, U11, U12, three small nucleolar RNAs; U13, snoR38, snord96, and one small cajal body-specific RNA; scarna3. Five sncRNAs were validated; miR-223 was significantly reduced in early osteoarthritis and miR-23b, let-7a-2, snord96A and snord13 were significantly upregulated. Significant cellular actions deduced by the differentially expressed microRNAs included apoptosis (P < 0.0003), necrosis (P < 0.0009), autophagy (P < 0.0007) and inflammation (P < 0.00001). A conservatively filtered list of 57 messenger RNA targets was obtained; the top biological processes associated were regulation of cell population proliferation (P < 0.000001), cellular response to chemical stimulus (P < 0.000001) and cell surface receptor signalling pathway (P < 0.000001). CONCLUSIONS: Synovial fluid sncRNAs may be used as molecular biomarkers for early disease in equine osteoarthritic joints. The biological processes they regulate may play an important role in understanding early osteoarthritis pathogenesis. Characterising these dynamic molecular changes could provide novel insights on the process and mechanism of early osteoarthritis development and is critical for the development of new therapeutic approaches.


Asunto(s)
Enfermedades de los Caballos/diagnóstico , Osteoartritis/veterinaria , ARN Pequeño no Traducido/metabolismo , Líquido Sinovial , Animales , Biomarcadores , Caballos , Osteoartritis/diagnóstico , Osteoartritis/metabolismo
10.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068921

RESUMEN

Bicistronic reporter assays have been instrumental for transgene expression, understanding of internal ribosomal entry site (IRES) translation, and identification of novel cap-independent translational elements (CITE). We observed a large methodological variability in the use of bicistronic reporter assays and data presentation or normalization procedures. Therefore, we systematically searched the literature for bicistronic IRES reporter studies and analyzed methodological details, data visualization, and normalization procedures. Two hundred fifty-seven publications were identified using our search strategy (published 1994-2020). Experimental studies on eukaryotic adherent cell systems and the cell-free translation assay were included for further analysis. We evaluated the following methodological details for 176 full text articles: the bicistronic reporter design, the cell line or type, transfection methods, and time point of analyses post-transfection. For the cell-free translation assay, we focused on methods of in vitro transcription, type of translation lysate, and incubation times and assay temperature. Data can be presented in multiple ways: raw data from individual cistrons, a ratio of the two, or fold changes thereof. In addition, many different control experiments have been suggested when studying IRES-mediated translation. In addition, many different normalization and control experiments have been suggested when studying IRES-mediated translation. Therefore, we also categorized and summarized their use. Our unbiased analyses provide a representative overview of bicistronic IRES reporter use. We identified parameters that were reported inconsistently or incompletely, which could hamper data reproduction and interpretation. On the basis of our analyses, we encourage adhering to a number of practices that should improve transparency of bicistronic reporter data presentation and improve methodological descriptions to facilitate data replication.


Asunto(s)
Genes Reporteros , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , Secuencias Reguladoras de Ácidos Nucleicos , Ribosomas/metabolismo , Animales , Humanos , Ribosomas/genética
11.
J Biol Chem ; 294(13): 5121-5136, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30718282

RESUMEN

Viperin (also known as radical SAM domain-containing 2 (RSAD2)) is an interferon-inducible and evolutionary conserved protein that participates in the cell's innate immune response against a number of viruses. Viperin mRNA is a substrate for endoribonucleolytic cleavage by RNase mitochondrial RNA processing (MRP) and mutations in the RNase MRP small nucleolar RNA (snoRNA) subunit of the RNase MRP complex cause cartilage-hair hypoplasia (CHH), a human developmental condition characterized by metaphyseal chondrodysplasia and severe dwarfism. It is unknown how CHH-pathogenic mutations in RNase MRP snoRNA interfere with skeletal development, and aberrant processing of RNase MRP substrate RNAs is thought to be involved. We hypothesized that viperin plays a role in chondrogenic differentiation. Using immunohistochemistry, real-time quantitative PCR, immunoblotting, ELISA, siRNA-mediated gene silencing, plasmid-mediated gene overexpression, label-free MS proteomics, and promoter reporter bioluminescence assays, we discovered here that viperin is expressed in differentiating chondrocytic cells and regulates their protein secretion and the outcome of chondrogenic differentiation by influencing transforming growth factor ß (TGF-ß)/SMAD family 2/3 (SMAD2/3) activity via C-X-C motif chemokine ligand 10 (CXCL10). Of note, we observed disturbances in this viperin-CXCL10-TGF-ß/SMAD2/3 axis in CHH chondrocytic cells. Our results indicate that the antiviral protein viperin controls chondrogenic differentiation by influencing secretion of soluble proteins and identify a molecular route that may explain impaired chondrogenic differentiation of cells from individuals with CHH.


Asunto(s)
Quimiocina CXCL10/metabolismo , Condrogénesis , Proteínas/metabolismo , Animales , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas/análisis , Proteínas/genética , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
12.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971951

RESUMEN

Knee osteoarthritis (OA) is a condition mainly characterized by cartilage degradation. Currently, no effective treatment exists to slow down the progression of OA-related cartilage damage. Selective COX-2 inhibitors may, next to their pain killing properties, act chondroprotective in vivo. To determine whether the route of administration is important for the efficacy of the chondroprotective properties of selective COX-2 inhibitors, a systematic review was performed according to the PRISMA guidelines. Studies investigating OA-related cartilage damage of selective COX-2 inhibitors in vivo were included. Nine of the fourteen preclinical studies demonstrated chondroprotective effects of selective COX-2 inhibitors using systemic administration. Five clinical studies were included and, although in general non-randomized, failed to demonstrate chondroprotective actions of oral selective COX-2 inhibitors. All of the four preclinical studies using bolus intra-articular injections demonstrated chondroprotective actions, while one of the three preclinical studies using a slow release system demonstrated chondroprotective actions. Despite the limited evidence in clinical studies that have used the oral administration route, there seems to be a preclinical basis for considering selective COX-2 inhibitors as disease modifying osteoarthritis drugs when used intra-articularly. Intra-articularly injected selective COX-2 inhibitors may hold the potential to provide chondroprotective effects in vivo in clinical studies.


Asunto(s)
Condrocitos , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Ciclooxigenasa 2/metabolismo , Citoprotección/efectos de los fármacos , Osteoartritis de la Rodilla , Animales , Condrocitos/enzimología , Condrocitos/patología , Humanos , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/enzimología , Osteoartritis de la Rodilla/patología
13.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784773

RESUMEN

Ageing is a leading risk factor predisposing cartilage to osteoarthritis. However, little research has been conducted on the effect of ageing on the expression of small non-coding RNAs (sncRNAs). RNA from young and old chondrocytes from macroscopically normal equine metacarpophalangeal joints was extracted and subjected to small RNA sequencing (RNA-seq). Differential expression analysis was performed in R using package DESeq2. For transfer RNA (tRNA) fragment analysis, tRNA reads were aligned to horse tRNA sequences using Bowtie2 version 2.2.5. Selected microRNA (miRNAs or miRs) and small nucleolar RNA (snoRNA) findings were validated using real-time quantitative Polymerase Chain Reaction (qRT-PCR) in an extended cohort of equine chondrocytes. tRNA fragments were further investigated in low- and high-grade OA human cartilage tissue. In total, 83 sncRNAs were differentially expressed between young and old equine chondrocytes, including miRNAs, snoRNAs, small nuclear RNAs (snRNAs), and tRNAs. qRT-PCR analysis confirmed findings. tRNA fragment analysis revealed that tRNA halves (tiRNAs), tiRNA-5035-GluCTC and tiRNA-5031-GluCTC-1 were reduced in both high grade OA human cartilage and old equine chondrocytes. For the first time, we have measured the effect of ageing on the expression of sncRNAs in equine chondrocytes. Changes were detected in a number of different sncRNA species. This study supports a role for sncRNAs in ageing cartilage and their potential involvement in age-related cartilage diseases.


Asunto(s)
Senescencia Celular/genética , Condrocitos/metabolismo , ARN Pequeño no Traducido/metabolismo , Envejecimiento/genética , Animales , Cartílago Articular/patología , Condrocitos/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Caballos/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
14.
Am J Med Genet A ; 179(8): 1652-1664, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31218820

RESUMEN

Frank-Ter Haar syndrome (FTHS), Winchester syndrome (WS), and multicentric osteolysis, nodulosis, and arthropathy (MONA) are ultra-rare multisystem disorders characterized by craniofacial malformations, reduced bone density, skeletal and cardiac anomalies, and dermal fibrosis. These autosomal recessive syndromes are caused by homozygous mutation or deletion of respectively SH3PXD2B (SH3 and PX Domains 2B), MMP14 (matrix metalloproteinase 14), or MMP2. Here, we give an overview of the clinical features of 63 previously reported patients with an SH3PXD2B, MMP14, or MMP2 mutation, demonstrating considerable clinical overlap between FTHS, WS, and MONA. Interestingly, the protein products of SH3PXD2B, MMP14, and MMP2 directly cooperate in collagen remodeling. We review animal models for these three disorders that accurately reflect the major clinical features and likewise show significant phenotypical similarity with each other. Furthermore, they demonstrate that defective collagen remodeling is central in the underlying pathology. As such, we propose a nosological revision, placing these SH3PXD2B, MMP14, and MMP2 related syndromes in a novel "defective collagen-remodelling spectrum (DECORS)". In our opinion, this revised nosology better reflects the central role for impaired collagen remodeling, a potential target for pharmaceutical intervention.


Asunto(s)
Colágeno/genética , Síndrome de Hajdu-Cheney/diagnóstico , Síndrome de Hajdu-Cheney/genética , Mutación , Fenotipo , Alelos , Animales , Colágeno/química , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo
15.
Int J Mol Sci ; 20(4)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781744

RESUMEN

During standard expansion culture (i.e., plasma osmolarity, 280 mOsm) human articular chondrocytes dedifferentiate, making them inappropriate for autologous chondrocyte implantation to treat cartilage defects. Increasing the osmolarity of culture media to physiological osmolarity levels of cartilage (i.e., 380 mOsm), increases collagen type II (COL2A1) expression of human articular chondrocytes in vitro, but the underlying molecular mechanism is not fully understood. We hypothesized that TGF-ß superfamily signaling may drive expression of COL2A1 under physiological osmolarity culture conditions. Human articular chondrocytes were cultured in cytokine-free medium of 280 or 380 mOsm with or without siRNA mediated TGF-ß2 knockdown (RNAi). Expression of TGF-ß isoforms, and collagen type II was evaluated by RT-qPCR and immunoblotting. TGF-ß2 protein secretion was evaluated using ELISA and TGF-ß bioactivity was determined using an established reporter assay. Involvement of BMP signaling was investigated by culturing human articular chondrocytes in the presence or absence of BMP inhibitor dorsomorphin and BMP bioactivity was determined using an established reporter assay. Physiological cartilage osmolarity (i.e., physosmolarity) most prominently increased TGF-ß2 mRNA expression and protein secretion as well as TGF-ß bioactivity. Upon TGF-ß2 isoform-specific knockdown, gene expression of chondrocyte marker COL2A1 was induced. TGF-ß2 RNAi under physosmolarity enhanced TGF-ß bioactivity. BMP bioactivity increased upon physosmotic treatment, but was not related to TGF-ß2 RNAi. In contrast, dorsomorphin inhibited COL2A1 mRNA expression in human articular chondrocytes independent of the osmotic condition. Our data suggest a role for TGF-ß superfamily member signaling in physosmolarity-induced mRNA expression of collagen type II. As physosmotic conditions favor the expression of COL2A1 independent of our manipulations, contribution of other metabolic, post-transcriptional or epigenetic factors cannot be excluded in the underlying complex and interdependent regulation of marker gene expression. Dissecting these molecular mechanisms holds potential to further improve future cell-based chondral repair strategies.


Asunto(s)
Biomarcadores/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulación de la Expresión Génica , Humanos , Especificidad de Órganos , Concentración Osmolar , Isoformas de Proteínas/metabolismo , Interferencia de ARN
16.
J Proteome Res ; 17(11): 3780-3790, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30229649

RESUMEN

Despite osteoarthritis (OA) and rheumatoid arthritis (RA) being typically age-related, their underlying etiologies are markedly different. We used 1H nuclear magnetic resonance (NMR) spectroscopy to identify differences in metabolite profiles in low volumes of OA and RA synovial fluid (SF). SF was aspirated from knee joints of 10 OA and 14 RA patients. 100 µL SF was analyzed using a 700 MHz Avance IIIHD Bruker NMR spectrometer with a TCI cryoprobe. Spectra were analyzed by Chenomx, Bruker TopSpin and AMIX software. Statistical analysis was undertaken using Metaboanalyst. 50 metabolites were annotated, including amino acids, saccharides, nucleotides and soluble lipids. Discriminant analysis identified group separation between OA and RA cohorts, with 32 metabolites significantly different between OA and RA SF (false discovery rate (FDR) < 0.05). Metabolites of glycolysis and the tricarboxylic acid cycle were lower in RA compared to OA; these results concur with higher levels of inflammation, synovial proliferation and hypoxia found in RA compared to OA. Elevated taurine in OA may indicate increased subchondral bone sclerosis. We demonstrate that quantifiable differences in metabolite abundance can be measured in low volumes of SF by 1H NMR spectroscopy, which may be clinically useful to aid diagnosis and improve understanding of disease pathogenesis.


Asunto(s)
Artritis Reumatoide/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/métodos , Osteoartritis/metabolismo , Líquido Sinovial/química , Anciano , Aminoácidos/química , Aminoácidos/clasificación , Aminoácidos/aislamiento & purificación , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Ciclo del Ácido Cítrico/inmunología , Estudios de Cohortes , Femenino , Glucólisis/inmunología , Humanos , Articulación de la Rodilla/inmunología , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Lípidos/química , Lípidos/clasificación , Lípidos/aislamiento & purificación , Masculino , Metabolómica/instrumentación , Persona de Mediana Edad , Nucleótidos/química , Nucleótidos/clasificación , Nucleótidos/aislamiento & purificación , Oligosacáridos/química , Oligosacáridos/clasificación , Oligosacáridos/aislamiento & purificación , Osteoartritis/inmunología , Osteoartritis/patología , Líquido Sinovial/metabolismo
17.
BMC Musculoskelet Disord ; 17: 124, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26975996

RESUMEN

BACKGROUND: Immediate early genes (IEGs) encode transcription factors which serve as first line response modules to altered conditions and mediate appropriate cell responses. The immediate early response gene EGR1 is involved in physiological adaptation of numerous different cell types. We have previously shown a role for EGR1 in controlling processes supporting chondrogenic differentiation. We recently established a unique set of phenotypically distinct cell lines from the human nucleus pulposus (NP). Extensive characterization showed that these NP cellular subtypes represented progenitor-like cell types and more functionally mature cells. METHODS: To further understanding of cellular heterogeneity in the NP, we analyzed the response of these cell subtypes to anabolic and catabolic factors. Here, we test the hypothesis that physiological responses of distinct NP cell types are mediated by EGR1 and reflect specification of cell function using an RNA interference-based experimental approach. RESULTS: We show that distinct NP cell types rapidly induce EGR1 exposure to either growth factors or inflammatory cytokines. In addition, we show that mRNA profiles induced in response to anabolic or catabolic conditions are cell type specific: the more mature NP cell type produced a strong and more specialized transcriptional response to IL-1ß than the NP progenitor cells and aspects of this response were controlled by EGR1. CONCLUSIONS: Our current findings provide important substantiation of differential functionality among NP cellular subtypes. Additionally, the data shows that early transcriptional programming initiated by EGR1 is essentially restrained by the cells' epigenome as it was determined during development and differentiation. These studies begin to define functional distinctions among cells of the NP and will ultimately contribute to defining functional phenotypes within the adult intervertebral disc.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Disco Intervertebral/metabolismo , Diferenciación Celular , Línea Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Interleucina-1beta/farmacología , Disco Intervertebral/citología , Disco Intervertebral/efectos de los fármacos , Fenotipo , Interferencia de ARN , Factores de Tiempo , Transcripción Genética , Transfección
18.
Acta Orthop ; 85(3): 305-13, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24673540

RESUMEN

BACKGROUND AND PURPOSE: (18)F-FDG PET is a widely used tool for molecular imaging of oncological, cardiovascular, and neurological disorders. We evaluated (18)F-FDG microPET as an implant osteomyelitis imaging tool using a Staphylococcus aureus-induced peroperative implant infection in rabbits. METHODS: Intramedullary titanium nails were implanted in contaminated and uncontaminated (control) proximal right tibiae of rabbits. Tibiae were quantitatively assessed with microPET for (18)F-FDG uptake before and sequentially at 1, 3, and 6 weeks after surgery. Tracer uptake was assessed in soft tissue and bone in both treatment groups with an additional comparison between the operated and unoperated limb. MicroPET analysis was combined with radiographic assessment and complementary histology of the tibiae. RESULTS: At the first postoperative week, the (18)F-FDG uptake in the contaminated implant group was significantly higher than the preoperative measurement, without a significant difference between the contaminated and uncontaminated tibiae. From the third postoperative week onward, (18)F-FDG uptake allowed discrimination between osteomyelitis and postoperative aseptic bone healing, as well as quantification of the infection at distinct locations around the implant. INTERPRETATION: (18)F-FDG-based microPET imaging allows differentiation between deep infection and undisturbed wound healing after implantation of a titanium intramedullary nail in this rabbit model. Furthermore, our results indicate that (18)F-FDG PET may provide a tool in human clinical diagnostics and for the evaluation of antimicrobial strategies in animal models of orthopedic implant infection.


Asunto(s)
Fluorodesoxiglucosa F18 , Osteomielitis/diagnóstico , Tomografía de Emisión de Positrones/métodos , Sepsis/diagnóstico , Tibia/microbiología , Cicatrización de Heridas/fisiología , Animales , Clavos Ortopédicos , Diagnóstico Diferencial , Modelos Animales de Enfermedad , Femenino , Fijación Intramedular de Fracturas/instrumentación , Estudios Longitudinales , Osteomielitis/diagnóstico por imagen , Osteomielitis/fisiopatología , Conejos , Sepsis/diagnóstico por imagen , Sepsis/fisiopatología , Staphylococcus aureus/aislamiento & purificación , Tibia/diagnóstico por imagen , Tibia/fisiopatología , Factores de Tiempo , Titanio
19.
J Biomed Mater Res A ; 112(9): 1424-1435, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38465895

RESUMEN

Currently available focal knee resurfacing implants (FKRIs) are fully or partially composed of metals, which show a large disparity in elastic modulus relative to bone and cartilage tissue. Although titanium is known for its excellent osseointegration, the application in FKRIs can lead to potential stress-shielding and metal implants can cause degeneration of the opposing articulating cartilage due to the high resulting contact stresses. Furthermore, metal implants do not allow for follow-up using magnetic resonance imaging (MRI).To overcome the drawbacks of using metal based FKRIs, a biomimetic and MRI compatible bi-layered non-resorbable thermoplastic polycarbonate-urethane (PCU)-based FKRI was developed. The objective of this preclinical study was to evaluate the mechanical properties, biocompatibility and osteoconduction of a novel Bionate® 75D - zirconium oxide (B75D-ZrO2) composite material in vitro and the osseointegration of a B75D-ZrO2 composite stem PCU implant in a caprine animal model. The tensile strength and elastic modulus of the B75D-ZrO2 composite were characterized through in vitro mechanical tests under ambient and physiological conditions. In vitro biocompatibility and osteoconductivity were evaluated by exposing human mesenchymal stem cells to the B75D-ZrO2 composite and culturing the cells under osteogenic conditions. Cell activity and mineralization were assessed and compared to Bionate® 75D (B75D) and titanium disks. The in vivo osseointegration of implants containing a B75D-ZrO2 stem was compared to implants with a B75D stem and titanium stem in a caprine large animal model. After a follow-up of 6 months, bone histomorphometry was performed to assess the bone-to-implant contact area (BIC). Mechanical testing showed that the B75D-ZrO2 composite material possesses an elastic modulus in the range of the elastic modulus reported for trabecular bone. The B75D-ZrO2 composite material facilitated cell mediated mineralization to a comparable extent as titanium. A significantly higher bone-to-implant contact (BIC) score was observed in the B75D-ZrO2 implants compared to the B75D implants. The BIC of B75D-ZrO2 implants was not significantly different compared to titanium implants. A biocompatible B75D-ZrO2 composite approximating the elastic modulus of trabecular bone was developed by compounding B75D with zirconium oxide. In vivo evaluation showed an significant increase of osseointegration for B75D-ZrO2 composite stem implants compared to B75D polymer stem PCU implants. The osseointegration of B75D-ZrO2 composite stem PCU implants was not significantly different in comparison to analogous titanium stem metal implants.


Asunto(s)
Ensayo de Materiales , Oseointegración , Cemento de Policarboxilato , Uretano , Circonio , Circonio/química , Circonio/farmacología , Animales , Oseointegración/efectos de los fármacos , Uretano/química , Cemento de Policarboxilato/química , Prótesis de la Rodilla , Humanos , Cabras , Materiales Biocompatibles/química , Células Madre Mesenquimatosas/citología
20.
Pharmaceutics ; 16(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675100

RESUMEN

Chronic lower back pain caused by intervertebral disc degeneration and osteoarthritis (OA) are highly prevalent chronic diseases. Although pain management and surgery can alleviate symptoms, no disease-modifying treatments are available. mRNA delivery could halt inflammation and degeneration and induce regeneration by overexpressing anti-inflammatory cytokines or growth factors involved in cartilage regeneration. Here, we investigated poly(amidoamine)-based polymeric nanoparticles to deliver mRNA to human joint and intervertebral disc cells. Human OA chondrocytes, human nucleus pulposus (NP) cells, human annulus fibrosus (AF) cells, fibroblast-like synoviocytes (FLS) and M1-like macrophages were cultured and transfected with uncoated or PGA-PEG-coated nanoparticles loaded with EGFP-encoding mRNA. Cell viability and transfection efficiency were analyzed for all cell types. Nanoparticle internalization was investigated in FLS and M1-like macrophages. No significant decrease in cell viability was observed in most conditions. Only macrophages showed a dose-dependent reduction of viability. Transfection with either nanoparticle version resulted in EGFP expression in NP cells, AF cells, OA chondrocytes and FLS. Macrophages showed internalization of nanoparticles by particle-cell co-localization, but no detectable expression of EGFP. Taken together, our data show that poly (amidoamine)-based nanoparticles can be used for mRNA delivery into cells of the human joint and intervertebral disc, indicating its potential future use as an mRNA delivery system in OA and IVDD, except for macrophages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA