Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Cell Physiol ; 235(4): 3731-3740, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31587305

RESUMEN

Prostate cancer (PCa) is one of the leading causes of cancer deaths in men. In this cancer, the stem cell transcription factor SOX2 increases during tumor progression, especially as the cancer progresses to the highly aggressive neuroendocrine-like phenotype. Other studies have shown that knockdown of RB1 and TP53 increases the expression of neuroendocrine markers, decreases the sensitivity to enzalutamide, and increases the expression of SOX2. Importantly, knockdown of SOX2 in the context of RB1 and TP53 depletion restored sensitivity to enzalutamide and reduced the expression of neuroendocrine markers. In this study, we examined whether elevating SOX2 is not only necessary, but also sufficient on its own to promote the expression of neuroendocrine markers and confer enzalutamide resistance. For this purpose, we engineered LNCaP cells for inducible overexpression of SOX2 (i-SOX2-LNCaP). As shown previously for other tumor cell types, inducible elevation of SOX2 in i-SOX2-LNCaP inhibited cell proliferation. SOX2 elevation also increased the expression of several neuroendocrine markers, including several neuropeptides and synaptophysin. However, SOX2 elevation did not decrease the sensitivity of i-SOX2-LNCaP cells to enzalutamide, which indicates that elevating SOX2 on its own is not sufficient to confer enzalutamide resistance. Furthermore, knocking down SOX2 in C4-2B cells, a derivative of LNCaP cells which is far less sensitive to enzalutamide and which expresses much higher levels of SOX2 than LNCaP cells, did not alter the growth response to this antiandrogen. Thus, our studies indicate that NE marker expression can increase independently of the sensitivity to enzalutamide.


Asunto(s)
Resistencia a Antineoplásicos/genética , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata/tratamiento farmacológico , Factores de Transcripción SOXB1/genética , Antagonistas de Andrógenos/metabolismo , Benzamidas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Sistemas Neurosecretores/metabolismo , Nitrilos , Feniltiohidantoína/farmacología , Próstata/efectos de los fármacos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
2.
BMC Cancer ; 20(1): 941, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32998722

RESUMEN

BACKGROUND: Quiescent tumor cells pose a major clinical challenge due to their ability to resist conventional chemotherapies and to drive tumor recurrence. Understanding the molecular mechanisms that promote quiescence of tumor cells could help identify therapies to eliminate these cells. Significantly, recent studies have determined that the function of SOX2 in cancer cells is highly dose dependent. Specifically, SOX2 levels in tumor cells are optimized to promote tumor growth: knocking down or elevating SOX2 inhibits proliferation. Furthermore, recent studies have shown that quiescent tumor cells express higher levels of SOX2 compared to adjacent proliferating cells. Currently, the mechanisms through which elevated levels of SOX2 restrict tumor cell proliferation have not been characterized. METHODS: To understand how elevated levels of SOX2 restrict the proliferation of tumor cells, we engineered diverse types of tumor cells for inducible overexpression of SOX2. Using these cells, we examined the effects of elevating SOX2 on their proliferation, both in vitro and in vivo. In addition, we examined how elevating SOX2 influences their expression of cyclins, cyclin-dependent kinases (CDKs), and p27Kip1. RESULTS: Elevating SOX2 in diverse tumor cell types led to growth inhibition in vitro. Significantly, elevating SOX2 in vivo in pancreatic ductal adenocarcinoma, medulloblastoma, and prostate cancer cells induced a reversible state of tumor growth arrest. In all three tumor types, elevation of SOX2 in vivo quickly halted tumor growth. Remarkably, tumor growth resumed rapidly when SOX2 returned to endogenous levels. We also determined that elevation of SOX2 in six tumor cell lines decreased the levels of cyclins and CDKs that control each phase of the cell cycle, while upregulating p27Kip1. CONCLUSIONS: Our findings indicate that elevating SOX2 above endogenous levels in a diverse set of tumor cell types leads to growth inhibition both in vitro and in vivo. Moreover, our findings indicate that SOX2 can function as a master regulator by controlling the expression of a broad spectrum of cell cycle machinery. Importantly, our SOX2-inducible tumor studies provide a novel model system for investigating the molecular mechanisms by which elevated levels of SOX2 restrict cell proliferation and tumor growth.


Asunto(s)
Proliferación Celular/genética , Recurrencia Local de Neoplasia/genética , Neoplasias/genética , Factores de Transcripción SOXB1/genética , Apoptosis/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Recurrencia Local de Neoplasia/patología , Neoplasias/patología
3.
Cancers (Basel) ; 15(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37190167

RESUMEN

MB is a common childhood malignancy of the central nervous system, with significant morbidity and mortality. Among the four molecular subgroups, MYC-amplified Group 3 MB is the most aggressive type and has the worst prognosis due to therapy resistance. The present study aimed to investigate the role of activated STAT3 in promoting MB pathogenesis and chemoresistance via inducing the cancer hallmark MYC oncogene. Targeting STAT3 function either by inducible genetic knockdown (KD) or with a clinically relevant small molecule inhibitor reduced tumorigenic attributes in MB cells, including survival, proliferation, anti-apoptosis, migration, stemness and expression of MYC and its targets. STAT3 inhibition attenuates MYC expression by affecting recruitment of histone acetyltransferase p300, thereby reducing enrichment of H3K27 acetylation in the MYC promoter. Concomitantly, it also decreases the occupancy of the bromodomain containing protein-4 (BRD4) and phosphoSer2-RNA Pol II (pSer2-RNAPol II) on MYC, resulting in reduced transcription. Importantly, inhibition of STAT3 signaling significantly attenuated MB tumor growth in subcutaneous and intracranial orthotopic xenografts, increased the sensitivity of MB tumors to cisplatin, and improved the survival of mice bearing high-risk MYC-amplified tumors. Together, the results of our study demonstrate that targeting STAT3 may be a promising adjuvant therapy and chemo-sensitizer to augment treatment efficacy, reduce therapy-related toxicity and improve quality of life in high-risk pediatric patients.

4.
Cancers (Basel) ; 14(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35454854

RESUMEN

Slowly cycling/infrequently proliferating tumor cells present a clinical challenge due to their ability to evade treatment. Previous studies established that high levels of SOX2 in both fetal and tumor cells restrict cell proliferation and induce a slowly cycling state. However, the mechanisms through which elevated SOX2 levels inhibit tumor cell proliferation have not been identified. To identify common mechanisms through which SOX2 elevation restricts tumor cell proliferation, we initially performed RNA-seq using two diverse tumor cell types. SOX2 elevation in both cell types downregulated MYC target genes. Consistent with these findings, elevating SOX2 in five cell lines representing three different human cancer types decreased MYC expression. Importantly, the expression of a dominant-negative MYC variant, omomyc, recapitulated many of the effects of SOX2 on proliferation, cell cycle, gene expression, and biosynthetic activity. We also demonstrated that rescuing MYC activity in the context of elevated SOX2 induces cell death, indicating that the downregulation of MYC is a critical mechanistic step necessary to maintain survival in the slowly cycling state induced by elevated SOX2. Altogether, our findings uncover a novel SOX2:MYC signaling axis and provide important insights into the molecular mechanisms through which SOX2 elevation induces a slowly cycling proliferative state.

5.
Biochem Biophys Res Commun ; 381(4): 706-11, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19254697

RESUMEN

There is a pressing need for new therapies to treat pancreatic cancer. In principle, this could be achieved by taking advantage of signaling pathways that are active in tumor, but not normal, cells. The work described in this study set out to determine whether the activities of three enhancers, which have been reported to be highly responsive to activated ras, differ in pancreatic tumor cells that express wild-type versus constitutively active mutant forms of K-ras. Surprisingly, the three enhancers are active in four different pancreatic tumor cell lines that express either normal K-ras gene or mutant K-ras. Moreover, reducing the concentration of serum in the growth medium from 10% to 0.5% had relatively little effect on the strength of any of the enhancers, although it drastically affected cell growth. Importantly, our studies also indicate that MEK is active in pancreatic tumor cells that possess wild-type as well as mutant K-ras, even when cultured in medium that severely limits cell growth. These findings support the hypothesis that the Ras/Raf/Mek/Erk pathway may be constitutively active even in pancreatic tumor cells that express wild-type K-ras.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas ras/metabolismo , Medios de Cultivo , Humanos , Mutación , Transducción de Señal
6.
Nucleic Acids Res ; 35(6): 1773-86, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17324942

RESUMEN

Recent studies have identified large sets of genes in embryonic stem and embryonal carcinoma cells that are associated with the transcription factors Sox2 and Oct-3/4. Other studies have shown that Sox2 and Oct-3/4 work together cooperatively to stimulate the transcription of their own genes as well as a network of genes required for embryogenesis. Moreover, small changes in the levels of Sox2:Oct-3/4 target genes alter the fate of stem cells. Although positive feedforward and feedback loops have been proposed to explain the activation of these genes, little is known about the mechanisms that prevent their overexpression. Here, we demonstrate that elevating Sox2 levels inhibits the endogenous expression of five Sox2:Oct-3/4 target genes. In addition, we show that Sox2 repression is dependent on the binding sites for Sox2 and Oct-3/4. We also demonstrate that inhibition is dependent on the C-terminus of Sox2, which contains its transactivation domain. Finally, our studies argue that overexpression of neither Oct-3/4 nor Nanog broadly inhibits Sox2:Oct-3/4 target genes. Collectively, these studies provide new insights into the diversity of mechanisms that control Sox2:Oct-3/4 target genes and argue that Sox2 functions as a molecular rheostat for the control of a key transcriptional regulatory network.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Transactivadores/metabolismo , Animales , Carcinoma Embrionario , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/metabolismo , Ratones , Proteína Homeótica Nanog , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Factores de Transcripción SOXB1 , Transactivadores/química , Transactivadores/genética , Transfección
7.
Oncotarget ; 7(23): 34890-906, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27145457

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly deadly malignancy. Expression of the stem cell transcription factor SOX2 increases during progression of PDAC. Knockdown of SOX2 in PDAC cell lines decreases growth in vitro; whereas, stable overexpression of SOX2 in one PDAC cell line reportedly increases growth in vitro. Here, we reexamined the role of SOX2 in PDAC cells, because inducible SOX2 overexpression in other tumor cell types inhibits growth. In this study, four PDAC cell lines were engineered for inducible overexpression of SOX2 or inducible knockdown of SOX2. Remarkably, inducible overexpression of SOX2 in PDAC cells inhibits growth in vitro and reduces tumorigenicity. Additionally, inducible knockdown of SOX2 in PDAC cells reduces growth in vitro and in vivo. Thus, growth and tumorigenicity of PDAC cells is highly dependent on the expression of optimal levels of SOX2 - a hallmark of molecular rheostats. We also determined that SOX2 alters the responses of PDAC cells to drugs used in PDAC clinical trials. Increasing SOX2 reduces growth inhibition mediated by MEK and AKT inhibitors; whereas knockdown of SOX2 further reduces growth when PDAC cells are treated with these inhibitors. Thus, targeting SOX2, or its mode of action, could improve the treatment of PDAC.


Asunto(s)
Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción SOXB1/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Animales , Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Proliferación Celular/genética , Doxorrubicina/farmacología , Femenino , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Ratones , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridonas/farmacología , Pirimidinonas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , Factores de Transcripción SOXB1/genética
8.
Gene ; 340(1): 123-31, 2004 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-15556300

RESUMEN

The transcription factor Elf3, which is one of over 25 Ets family members, is expressed in a wide variety of carcinomas and has been shown to promote the transcription of many genes implicated in cancer. To understand how the Elf3 gene is regulated at the transcriptional level, we probed its 5'-flanking region, and we report here the identification of both proximal and distal regions that regulate murine Elf3 promoter activity. In addition to mapping the transcription start site of the Elf3 gene, the work described in this study identifies four cis-regulatory elements in the proximal promoter region of the gene. These include a cis-regulatory element previously designated ESE, a kappaB site, a POU motif, and a CCAAT box. In addition, we demonstrate that a novel 94 bp region 2 kb upstream of the transcription start site significantly elevates Elf3 promoter activity in F9-differentiated cells, but not in the parental F9 embryonal carcinoma (EC) cells. This region appears to be largely responsible for the increase in Elf3 promoter activity that accompanies the differentiation of embryonal carcinoma cells.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/genética , Región de Flanqueo 5'/genética , Animales , Secuencia de Bases , Carcinoma Embrionario/genética , Carcinoma Embrionario/patología , Línea Celular Tumoral , ADN de Neoplasias/química , ADN de Neoplasias/genética , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN , Sitio de Iniciación de la Transcripción , Transcripción Genética , Transfección
9.
Cancer Biol Ther ; 15(8): 1042-52, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24841553

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadly malignancies. Recently, the deubiquitinating protease USP9X has been shown to behave as an oncogene in a number of neoplasms, including those of breast, brain, colon, esophagus and lung, as well as KRAS wild-type PDAC. However, other studies suggest that USP9X may function as a tumor-suppressor in a murine PDAC model when USP9X expression is depleted during early pancreatic development. To address the conflicting findings surrounding the role of USP9X in PDAC, we examined the effects of knocking down USP9X in five human PDAC cell lines (BxPC3, Capan1, CD18, Hs766T, and S2-013). We demonstrate that knocking down USP9X in each of the PDAC cell lines reduces their anchorage-dependent growth. Using an inducible shRNA system to knock down USP9X in both BxPC3 and Capan1 cells, we also determined that USP9X is necessary for the anchorage-independent growth. In addition, knockdown of USP9X alters the cell cycle profile of BxPC3 cells and increases their invasive capacity. Finally, we show that an inhibitor of deubiquitinating proteases, WP1130, induces significant cytotoxicity in each of the five PDAC cell lines tested. Overall, our work and the work of others indicate that the function and role of USP9X is highly context-dependent. Although USP9X may function as a tumor-suppressor during the establishment of PDAC, data presented here argue that USP9X promotes cell growth in advanced PDAC cells when PDAC is typically diagnosed. Hence, USP9X may be a promising therapeutic target for the treatment of advanced PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Nitrilos/farmacología , Neoplasias Pancreáticas/metabolismo , Inhibidores de Proteasas/farmacología , Piridinas/farmacología , Ubiquitina Tiolesterasa/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cianoacrilatos , Humanos , Invasividad Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Represoras/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
10.
PLoS One ; 8(5): e62857, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667531

RESUMEN

Medulloblastomas and glioblastomas, the most common primary brain tumors in children and adults, respectively, are extremely difficult to treat. Efforts to identify novel proteins essential for the growth of these tumors may help to further our understanding of the biology of these tumors, as well as, identify targets for future therapies. The recent identification of multiple transcription factor-centric protein interaction landscapes in embryonic stem cells has identified numerous understudied proteins that are essential for the self-renewal of these stem cells. To identify novel proteins essential for the fate of brain tumor cells, we examined the protein interaction network of the transcription factor, SOX2, in medulloblastoma cells. For this purpose, Multidimensional Protein Identification Technology (MudPIT) identified >280 SOX2-associated proteins in the medulloblastoma cell line DAOY. To begin to understand the roles of SOX2-associated proteins in brain cancer, we focused on two SOX2-associated proteins, Musashi 2 (MSI2) and Ubiquitin Specific Protease 9x (USP9X). Recent studies have implicated MSI2, a putative RNA binding protein, and USP9X, a deubiquitinating enzyme, in several cancers, but not brain tumors. We demonstrate that knockdown of MSI2 significantly reduces the growth of DAOY cells as well as U87 and U118 glioblastoma cells. We also demonstrate that the knockdown of USP9X in DAOY, U87 and U118 brain tumor cells strongly reduces their growth. Together, our studies identify a large set of SOX2-associated proteins in DAOY medulloblastoma cells and identify two proteins, MSI2 and USP9X, that warrant further investigation to determine whether they are potential therapeutic targets for brain cancer.


Asunto(s)
Neoplasias Encefálicas/patología , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Ingeniería Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Técnicas de Silenciamiento del Gen , Ratones , Unión Proteica , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/genética
11.
PLoS One ; 7(8): e44087, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22937156

RESUMEN

Medulloblastomas and glioblastomas are devastating tumors that respond poorly to treatment. These tumors have been shown to express SOX2 and overexpression of SOX2 has been correlated with poor prognosis. Although knockdown of SOX2 impairs the growth and tumorigenicity of brain tumor cells, it was unclear how elevating SOX2 levels would affect their fate. Interestingly, studies conducted with neural stem cells have shown that small increases or decreases in the level of this transcription factor significantly alter their fate. Here, we report that elevating SOX2 3-fold above endogenous levels in U87 and U118 glioblastoma, and DAOY medulloblastoma cells significantly impairs their ability to proliferate. We extended these findings and determined that elevating SOX2 in DAOY cells remodels their cell-cycle profile by increasing the proportion of cells in the G1-compartment, and induces the expression of genes associated with differentiation. Furthermore, we show that elevating SOX2 leads to a dramatic induction of CD133 expression in DAOY cells, yet inhibits the ability of both CD133(+) and CD133(-) cells to form neurospheres. Together, these findings argue that SOX2 levels must be carefully controlled in glioblastomas and medulloblastomas to maintain their fate. Equally important, our data suggests that increases in the expression of SOX2 during brain tumor progression are likely to be linked closely with changes in other critical genes that work in concert with SOX2 to enhance the tumorigenicity of brain tumors. Importantly, we demonstrate that this is also likely to be true for other cancers that express SOX2. Moreover, these studies demonstrate the advantage of using inducible promoters to study the effects of SOX2 elevation, as compared to gene expression systems that rely on constitutive expression.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Meduloblastoma/genética , Factores de Transcripción SOXB1/genética , Antígeno AC133 , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Masculino , Meduloblastoma/metabolismo , Meduloblastoma/patología , Péptidos/genética , Péptidos/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factores de Transcripción SOXB1/metabolismo
12.
J Mol Biol ; 397(1): 278-89, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20079749

RESUMEN

The Ets family of transcription factors is composed of more than 30 members. One of its members, Elf3, is expressed in virtually all epithelial cells as well as in many tumors, including breast tumors. Several studies observed that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3 via two adjacent Elf3 binding sites, the A-site and the B-site. Here, we report the 2.2 A resolution crystal structure of a mouse Elf3 C-terminal fragment, containing the DNA-binding Ets domain, in complex with the B-site of mouse type II TGF-beta receptor promoter DNA (mTbetaR-II(DNA)). Elf3 contacts the core GGAA motif of the B-site from a major groove similar to that of known Ets proteins. However, unlike other Ets proteins, Elf3 also contacts sequences of the A-site from the minor groove of the DNA. DNA binding experiments and cell-based transcription studies indicate that minor groove interaction by Arg349 located in the Ets domain is important for Elf3 function. Equally interesting, previous studies have shown that the C-terminal region of Elf3, which flanks the Ets domain, is required for Elf3 binding to DNA. In this study, we determined that Elf3 amino acid residues within this flanking region, including Trp361, are important for the structural integrity of the protein as well as for the Efl3 DNA binding and transactivation activity.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Receptores de Factores de Crecimiento Transformadores beta/química , Receptores de Factores de Crecimiento Transformadores beta/genética , Factores de Transcripción/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , ADN/metabolismo , Análisis Mutacional de ADN , Ensayo de Cambio de Movilidad Electroforética , Humanos , Ratones , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Mutación Puntual/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transcripción Genética
13.
Cell Cycle ; 9(15): 3054-62, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20686355

RESUMEN

Ets1 is a member of the Ets family of transcription factors. Ets1 is autoinhibited and its activation requires heterodimerization with a partner protein or DNA-mediated homodimerization for cooperative DNA binding. In the latter case, Ets1 molecules bind to palindromic sequences in which two Ets-binding sites (EBS) are separated by four base pairs, for example in the promoters of stromelysin-1 and p53. Interestingly, counteraction of autoinhibition requires the autoinhibitory region encoded by exon VII of the gene. The structural basis for the requirement of autoinhibitory sequences for Ets1 binding to palindromic EBS still remains unresolved. Here we report the crystal structure of two Ets1 molecules bound to an EBS palindrome of the stromelysin-1 promoter DNA, providing a plausible explanation for the requirement of exon VII-encoded sequences for Ets1 cooperative DNA binding. The proposed mechanism was verified both in vitro by surface plasmon resonance and in vivo by transcription-based assays.


Asunto(s)
ADN/metabolismo , Secuencias Invertidas Repetidas/genética , Metaloproteinasa 3 de la Matriz/genética , Regiones Promotoras Genéticas , Proteína Proto-Oncogénica c-ets-1/química , Proteína Proto-Oncogénica c-ets-1/metabolismo , Secuencia de Aminoácidos , Línea Celular , Cristalografía por Rayos X , Humanos , Cinética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Relación Estructura-Actividad
14.
J Biol Chem ; 282(5): 3027-41, 2007 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-17148437

RESUMEN

Elf3 is an epithelially restricted member of the ETS transcription factor family, which is involved in a wide range of normal cellular processes. Elf3 is also aberrantly expressed in several cancers, including breast cancer. To better understand the molecular mechanisms by which Elf3 regulates these processes, we created a large series of Elf3 mutant proteins with specific domains deleted or targeted by point mutations. The modified forms of Elf3 were used to analyze the contribution of each domain to DNA binding and the activation of gene expression. Our work demonstrates that three regions of Elf3, in addition to its DNA binding domain (ETS domain), influence Elf3 binding to DNA, including the transactivation domain that behaves as an autoinhibitory domain. Interestingly, disruption of the transactivation domain relieves the autoinhibition of Elf3 and enhances Elf3 binding to DNA. On the basis of these studies, we suggest a model for autoinhibition of Elf3 involving intramolecular interactions. Importantly, this model is consistent with our finding that the N-terminal region of Elf3, which contains the transactivation domain, interacts with its C terminus, which contains the ETS domain. In parallel studies, we demonstrate that residues flanking the N- and C-terminal sides of the ETS domain of Elf3 are crucial for its binding to DNA. Our studies also show that an AT-hook domain, as well as the serine- and aspartic acid-rich domain but not the pointed domain, is necessary for Elf3 activation of promoter activity. Unexpectedly, we determined that one of the AT-hook domains is required in a promoter-specific manner.


Asunto(s)
ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , ADN/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Cromatina/fisiología , Cartilla de ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Factores de Transcripción/metabolismo
15.
J Cell Physiol ; 208(1): 97-108, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16523502

RESUMEN

Transcription factors Oct-3/4 and Sox2 behave as global regulators during mammalian embryogenesis. They work together by binding co-operatively to closely spaced HMG and POU motifs (HMG/POU cassettes). Recently, it was suggested that a critical Sox2:Oct-3/4 target gene, FGF-4, is expressed at lower levels in P19 than in F9 embryonal carcinoma (EC) cells, due to lower levels of Sox2 in P19 than in F9 cells. We tested this possibility to better understand how FGF-4 expression is modulated during development. Although we found that P19 EC cells express approximately 10-fold less FGF-4 mRNA than F9 EC cells, we determined that Sox2 levels do not differ markedly in F9 and P19 EC cells. We also determined that Sox2 and Oct-3/4 work together equally well in both EC cell lines. Moreover, in contrast to an earlier prediction based on in vitro binding studies, we demonstrate that the function of the HMG/POU cassettes of the FGF-4 and UTF1 genes does not differ significantly in these EC cell lines when tested in the context of a natural enhancer. Importantly, we determined that the FGF-4 promoter is highly responsive to a heterologous enhancer in both EC cell lines; whereas, the FGF-4 enhancer is 7- to 10-fold less active in P19 than in F9 EC cells. Because F9 and P19 EC cells are likely to represent cells at different stages of mammalian development, we suggest that this difference in FGF-4 enhancer activity may reflect a mechanism used to decrease, but not abolish, FGF-4 expression as the early embryo develops.


Asunto(s)
Elementos de Facilitación Genéticos/fisiología , Factor 4 de Crecimiento de Fibroblastos/fisiología , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias de Células Germinales y Embrionarias/fisiopatología , Animales , Western Blotting , Línea Celular Tumoral , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Ensayo de Cambio de Movilidad Electroforética , Elementos de Facilitación Genéticos/genética , Factor 4 de Crecimiento de Fibroblastos/análisis , Factor 4 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Dominios HMG-Box/genética , Ratones , Neoplasias de Células Germinales y Embrionarias/química , Neoplasias de Células Germinales y Embrionarias/genética , Factor 3 de Transcripción de Unión a Octámeros/análisis , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Factores del Dominio POU/genética , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/análisis , ARN Mensajero/genética , Factores de Transcripción SOXB1 , Transactivadores/análisis , Transactivadores/genética , Transactivadores/fisiología , Transfección
16.
J Biol Chem ; 277(20): 17520-30, 2002 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-11893733

RESUMEN

Previous studies demonstrated that differentiation of mouse embryonal carcinoma cells leads to transcriptional up-regulation of the mouse type II transforming growth factor-beta receptor (mTbetaR-II) gene. To elucidate the molecular mechanisms regulating transcription of this gene, we isolated the 5'-flanking region of the mTbetaR-II gene and characterized its expression in F9-differentiated cells. Analysis of mTbetaR-II promoter/reporter gene constructs demonstrates that two conserved Ets-binding sites play an important role in the activity of the mTbetaR-II promoter. Importantly, we present evidence that mElf-3, a member of the Ets family, plays a key role in the activation of the mTbetaR-II promoter. Northern blot analysis reveals that the steady-state levels of mTbetaR-II mRNA increase in parallel with those of mElf-3 mRNA during the differentiation of F9 embryonal carcinoma cells. We also demonstrate that mElf-3 contains one or more domains that influence its binding to DNA. Finally, we report that a single amino acid substitution in the transactivation domain of mElf-3 reduces its ability to transactivate and elevates its steady-state levels of expression. In conclusion, our data argue that mElf-3 plays a key role in the regulation of the mTbetaR-II gene, and Elf-3 itself is regulated at multiple levels.


Asunto(s)
Proteínas de Unión al ADN , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas/fisiología , Receptores de Factores de Crecimiento Transformadores beta/genética , Factores de Transcripción/fisiología , Regulación hacia Arriba , Animales , Secuencia de Bases , Northern Blotting , ADN/metabolismo , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-ets , ARN Mensajero/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Factores de Transcripción/genética , Activación Transcripcional , Células Tumorales Cultivadas
17.
Mol Reprod Dev ; 63(3): 282-90, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12237943

RESUMEN

Previous studies have demonstrated that differentiation of murine embryonal carcinoma (EC) cells leads to the appearance of high affinity receptors for transforming growth factor-beta (TGF-beta). Subsequently, it was demonstrated that differentiation of F9 EC cells leads to increases in the transcription of the type II TGF-beta-receptor gene (TbetaR-II) and leads to significant increases in the steady-state levels of TbetaR-II mRNA. Analysis of the human TbetaR-II promoter in F9-differentiated cells identified several cis-regulatory elements that influence the activity of the promoter, including a CRE/ATF site and a CCAAT box motif. In the work described in this report, we focused on the effect of the transcription factor Egr-1 on the murine TbetaR-II promoter. We have identified an Egr-1 response-element approximately 150 bp upstream of the major transcription start site of the murine TbetaR-II gene. We demonstrate by electrophoretic mobility shift analysis (EMSA) that this cis-regulatory element binds Egr-1, and we demonstrate that disruption of this site eliminates the response to Egr-1. As part of this analysis, we also examined the effect of Egr-1 on human TbetaR-II promoter. In contrast to a previous report, which reported that Egr-1 inhibits expression of human TbetaR-II promoter/reporter gene constructs, we did not observe an inhibitory effect of Egr-1 that was specific for the human TbetaR-II promoter. Taken together, the findings described in this report identify important differences between the human and the murine TbetaR-II promoter, and our findings identify an Egr-1 cis-regulatory element that is capable of stimulating the activity of the murine TbetaR-II promoter.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Inmediatas-Precoces , Regiones Promotoras Genéticas , Receptores de Factores de Crecimiento Transformadores beta/genética , Factores de Transcripción/metabolismo , Región de Flanqueo 5'/genética , Animales , Proteína 1 de la Respuesta de Crecimiento Precoz , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica/fisiología , Genes Reguladores , Humanos , Ratones , Proteínas Serina-Treonina Quinasas , Receptor Tipo II de Factor de Crecimiento Transformador beta
18.
J Biol Chem ; 279(19): 19407-20, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-14976186

RESUMEN

Previous studies have shown that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3, a member of the Ets transcription factor family. The TbetaR-II gene behaves as a tumor suppressor and it is expressed in nearly all cell types, whereas Elf3 is expressed primarily in epithelial cells. Hence, the TbetaR-II gene is likely to be regulated by other Ets proteins in nonepithelial cells. In this study, we examined the effects of four other Ets family members (Ets1, Ets2, PEA3, and PU.1) on TbetaR-II promoter/reporter constructs that contain the two essential ets sites of this gene. These studies employed F9 embryonal carcinoma cells and their differentiated cells, because transcription of the TbetaR-II gene increases after F9 cells differentiate. Here we demonstrate that Ets2, which is expressed in F9-differentiated cells along with Elf3, does not stimulate or bind to the TbetaR-II promoter in these cells. In contrast, PEA3 stimulates the TbetaR-II promoter in F9-differentiated cells, but it inhibits this promoter in F9 cells. Thus, the effects of PEA3 on the TbetaR-II promoter are cell context-dependent. We also show that the effects of Elf3 are cell context-dependent. Elf3 strongly stimulates the TbetaR-II promoter in F9-differentiated cells, but not in F9 cells. In contrast to Elf3 and PEA3, Ets1 strongly stimulates this promoter in both F9 cells and F9-differentiated cells. Finally, we show that PU.1 exerts little or no effect on the activity of the TbetaR-II promoter. Together, our findings indicate that Elf3 is not the only Ets protein capable of stimulating the TbetaR-II promoter. Importantly, our findings also indicate that each of the five Ets proteins influences the TbetaR-II promoter in a unique manner because of important differences in their biochemical properties or their patterns of cellular expression.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/fisiología , Receptores de Factores de Crecimiento Transformadores beta/genética , Transactivadores/fisiología , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , ADN/química , Genes Reporteros , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/metabolismo , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Unión Proteica , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Proteína Proto-Oncogénica c-ets-1 , Proteína Proto-Oncogénica c-ets-2 , Proteínas Proto-Oncogénicas c-ets , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA