Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 447(7140): 53-7, 2007 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-17476260

RESUMEN

Diatremes are carrot-shaped bodies forming the upper parts of very deep magmatic intrusions of kimberlite rock. These unusual, enigmatic and complex features are famous as the source of diamonds. Here we present a new model of kimberlite ascent and eruption, emphasizing the extremely unsteady nature of this process to resolve many of the seemingly contradictory characteristics of kimberlites and diatremes. Dyke initiation in a deep CO2-rich source region in the mantle leads to rapid propagation of the dyke tip, below which CO2 fluid collects, with a zone of magmatic foam beneath. When the tip breaks the surface of the ground, gas release causes a depressurization wave to travel into the magma. This wave implodes the dyke walls, fragments the magma, and creates a 'ringing' fluidization wave. Together, these processes form the diatreme. Catastrophic magma chilling seals the dyke. No precursor to the eruption is felt at the surface and the processes are complete in about an hour.

2.
Icarus ; 331: 192-208, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32550742

RESUMEN

Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter (~90-190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic complex (north and south). Each is characterized by distinct surface geologic features suggestive of ancient impact craters and/or volcanic/plutonic activity. Here, we combine geologic analyses with forward modeling of high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission in order to constrain the subsurface structures that contribute to these four PBGAs. The GRAIL data presented here, at spherical harmonic degrees 6-660, permit higher resolution analyses of these anomalies than previously reported, and reveal new information about subsurface structures. Specifically, we find that the amplitudes of the four PBGAs cannot be explained solely by mare-flooded craters, as suggested in previous work; an additional density contrast is required to explain the high-amplitude of the PBGAs. For Northern Flamsteed (190 km diameter), the additional density contrast may be provided by impact-related mantle uplift. If the local crust has a density ~2800 kg/m3, then ~7 km of uplift is required for this anomaly, although less uplift is required if the local crust has a lower mean density of ~2500 kg/m3. For the Northern and Southern Marius Hills anomalies, the additional density contrast is consistent with the presence of a crustal complex of vertical dikes that occupies up to ~37% of the regionally thin crust. The structure of Southern Aristarchus Plateau (90 km diameter), an anomaly with crater-related topographic structures, remains ambiguous. Based on the relatively small size of the anomaly, we do not favor mantle uplift, however understanding mantle response in a region of especially thin crust needs to be better resolved. It is more likely that this anomaly is due to subsurface magmatic material given the abundance of volcanic material in the surrounding region. Overall, the four PBGAs analyzed here are important in understanding the impact and volcanic/plutonic history of the Moon, specifically in a region of thin crust and elevated temperatures characteristic of the Procellarum KREEP Terrane.

3.
Aust Health Rev ; 28(1): 20-5, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15525247

Asunto(s)
Hospitales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA