Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Development ; 145(22)2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30337376

RESUMEN

TWE-PRIL is a naturally occurring fusion protein of components of two TNF superfamily members: the extracellular domain of APRIL; and the intracellular and transmembrane domains of TWEAK with no known function. Here, we show that April-/- mice (which lack APRIL and TWE-PRIL) exhibited overgrowth of sympathetic fibres in vivo, and sympathetic neurons cultured from these mice had significantly longer axons than neurons cultured from wild-type littermates. Enhanced axon growth from sympathetic neurons cultured from April-/- mice was prevented by expressing full-length TWE-PRIL in these neurons but not by treating them with soluble APRIL. Soluble APRIL, however, enhanced axon growth from the sympathetic neurons of wild-type mice. siRNA knockdown of TWE-PRIL but not siRNA knockdown of APRIL alone also enhanced axon growth from wild-type sympathetic neurons. Our work reveals the first and physiologically relevant role for TWE-PRIL and suggests that it mediates reverse signalling.


Asunto(s)
Axones/metabolismo , Transducción de Señal , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Animales , Antígeno de Maduración de Linfocitos B/genética , Antígeno de Maduración de Linfocitos B/metabolismo , Células Cultivadas , Citocina TWEAK/genética , Citocina TWEAK/metabolismo , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Modelos Biológicos , Factor de Crecimiento Nervioso/farmacología , Fenotipo , ARN Interferente Pequeño/metabolismo , Solubilidad , Ganglio Cervical Superior/metabolismo , Sistema Nervioso Simpático/crecimiento & desarrollo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética
2.
Front Cell Neurosci ; 16: 961276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726454

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates several aspects of brain function. Although numerous studies have demonstrated the expression and function of BDNF in neurons, its expression in microglia remains controversial. Using a combination of genetic tools and fluorescence imaging, we analyzed BDNF expression patterns and investigated the effect of microglial Bdnf deletion on neuronal activity, early-stage spine formation, and microglia-neuron attraction in the motor cortex. We did not detect BDNF expression in microglia at the transcriptional or translational level, in physiological or pathological conditions, and none of the assessed neuronal functions were found to be affected in conditional Bdnf knockout mice. Our results suggest that microglia do not express BDNF in sufficient amounts to modulate neuronal function.

3.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31882533

RESUMEN

While BDNF is receiving considerable attention for its role in synaptic plasticity and in nervous system dysfunction, identifying brain circuits involving BDNF-expressing neurons has been challenging. BDNF levels are very low in most brain areas, except for the large mossy fiber terminals in the hippocampus where BDNF accumulates at readily detectable levels. This report describes the generation of a mouse line allowing the detection of single brain cells synthesizing BDNF. A bicistronic construct encoding BDNF tagged with a P2A sequence preceding GFP allows the translation of BDNF and GFP as separate proteins. Following its validation with transfected cells, this construct was used to replace the endogenous Bdnf gene. Viable and fertile homozygote animals were generated, with the GFP signal marking neuronal cell bodies translating the Bdnf mRNA. Importantly, the distribution of immunoreactive BDNF remained unchanged, as exemplified by its accumulation in mossy fiber terminals in the transgenic animals. GFP-labeled neurons could be readily visualized in distinct layers in the cerebral cortex where BDNF has been difficult to detect with currently available reagents. In the hippocampal formation, quantification of the GFP signal revealed that <10% of the neurons do not translate the Bdnf mRNA at detectable levels, with the highest proportion of strongly labeled neurons found in CA3.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Hipocampo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Ratones , Plasticidad Neuronal , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA