Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 144: 107177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335756

RESUMEN

In order to find effective α-glucosidase inhibitors, a series of thiazolidine-2,4-dione derivatives (C1 âˆ¼ 36) were synthesized and evaluated for α-glucosidase inhibitory activity. Compared to positive control acarbose (IC50 = 654.35 ± 65.81 µM), all compounds (C1 âˆ¼ 36) showed stronger α-glucosidase inhibitory activity with IC50 values of 0.52 ± 0.06 âˆ¼ 9.31 ± 0.96 µM. Among them, C23 with the best anti-α-glucosidase activity was a reversible mixed-type inhibitor. Fluorescence quenching suggested the binding process of C23 with α-glucosidase in a static process. Fluorescence quenching, CD spectra, and 3D fluorescence spectra results also implied that the binding of C23 with α-glucosidase caused the conformational change of α-glucosidase to inhibit the activity. Molecular docking displayed the binding interaction of C23 with α-glucosidase. Compound C23 (8 âˆ¼ 64 µM) showed no cytotoxicity against LO2 and 293 cells. Moreover, oral administration of C23 (50 mg/kg) could reduce blood glucose and improve glucose tolerance in mice.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Tiazolidinedionas , Ratones , Animales , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/química , Estructura Molecular , Relación Estructura-Actividad , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Tiazolidinas
2.
Bioorg Chem ; 142: 106937, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37913583

RESUMEN

Gemcitabine (GEM) is a standard chemotherapeutic agent for patients with pancreatic cancer; however, GEM-based chemotherapy has a high rate of toxicity. A combination of GEM and active constituents from natural products may enhance its therapeutic efficacy and reduce its toxicity. This study investigated the synergistic effects of the combination of liriopesides B (LirB) from Liriope spicata var. prolifera and GEM on human pancreatic cancer cells. The results of our study showed that the combination of LirB and GEM synergistically decreased the viability of pancreatic cancer cells. The combination also caused a strong increase in apoptosis and a strong decrease in cell migration and invasion. Furthermore, LirB combined with GEM had potent inhibitory effects on pancreatic cancer stem cells (CSCs). Studies on the mechanisms of action showed that the combination more potently inhibited protein kinase B (Akt) and nuclear factor kappa B (NF-κB), as well as the downstream antiapoptotic molecules B-cell lymphoma 2 (Bcl-2) and survivin than either agent used alone. The results of this study suggest that the combination of LirB with GEM may improve the efficacy of GEM for the treatment of pancreatic cancer.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/farmacología , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , FN-kappa B/metabolismo , Apoptosis , Proliferación Celular
3.
J Enzyme Inhib Med Chem ; 39(1): 2296355, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38234133

RESUMEN

Orthosiphon aristatus is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (1-8), including a new one with a rarely occurring α,ß-unsaturated diketone C-ring, were isolated from O. aristatus. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (9-15). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound 10 showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1ß, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that 10 could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.


Asunto(s)
Artritis Reumatoide , Diterpenos , Orthosiphon , Humanos , Orthosiphon/química , Orthosiphon/metabolismo , Abietanos , Artritis Reumatoide/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Diterpenos/farmacología , Diterpenos/química , FN-kappa B/metabolismo
4.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110629

RESUMEN

Naproxen is widely used for anti-inflammatory treatment but it can lead to serious side effects. To improve the anti-inflammatory activity and safety, a novel naproxen derivative containing cinnamic acid (NDC) was synthesized and used in combination with resveratrol. The results showed that the combination of NDC and resveratrol at different ratios have a synergistic anti-inflammatory efficacy in RAW264.7 macrophage cells. It was indicated that the combination of NDC and resveratrol at a ratio of 2:1 significantly inhibited the expression of carbon monoxide (NO), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), induced nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and reactive oxygen species (ROS) without detectable side effects on cell viability. Further studies revealed that these anti-inflammatory effects were mediated by the activation of nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) signaling pathways, respectively. Taken together, these results highlighted the synergistic NDC and resveratrol anti-inflammatory activity that could be further explored as a strategy for the treatment of inflammatory disease with an improved safety profile.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Resveratrol/farmacología , Naproxeno/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal , Antiinflamatorios/farmacología , Células RAW 264.7 , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Ciclooxigenasa 2/metabolismo
5.
Molecules ; 28(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37764389

RESUMEN

Four previously undescribed terpenoid glucosides, including one sesquiterpenoid di-glucoside (1), two new iridoid glucosides (2, 3), and a new triterpenoid tri-glucoside (4), were isolated from a 70% ethanol extract of the root of Gentiana macrophylla (Gentianaceae), along with eight known terpenoids. Their structures were determined by spectroscopic techniques, including 1D, 2D NMR, and HRMS (ESI), as well as chemical methods. The absolute configuration of compound 1 was determined by quantum chemical calculation of its theoretical electronic circular dichroism (ECD) spectrum. The sugar moieties of all the new compounds were confirmed to be D-glucose by GC analysis after acid hydrolysis and acetylation. Anti-pulmonary inflammation activity of the iridoids were evaluated on a TNF-α induced inflammation model in A549 cells. Compound 2 could significantly alleviate the release of proinflammatory cytokines IL-1ß and IL-8 and increase the expression of anti-inflammatory cytokine IL-10.


Asunto(s)
Gentiana , Neumonía , Humanos , Terpenos/farmacología , Factor de Necrosis Tumoral alfa , Glucósidos/farmacología , Células A549 , Citocinas , Extractos Vegetales/farmacología
6.
Bioorg Chem ; 122: 105714, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276603

RESUMEN

18ß-glycyrrhetinic acid (GA) is a well-known natural compound of oleanane-type triterpene and is found possessing antimicrobial and anti-inflammatory properties. Nonetheless, its relatively low bioactivity restricts its potential in pharmaceutical applications. To maximize the potential use of this natural herbal compound as antimicrobial and anti-inflammatory agents, the rational modification of GA to enhance its pharmacological activity with low toxicity and to understand the mechanism of action is critically essential. We reported herein the design and synthesis of a series of new GA derivatives. The antimicrobial activities of these new compounds were evaluated by inhibition zone test and minimum inhibitory concentration (MIC) assay. In addition, the anti-inflammatory activity was evaluated by LPS induced BV2 cells inflammation model and 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced ear inflammation mice model. It was found that the derivatives functionalized with a di-substituted phenyl group at the 2-position of GA generally displayed high antimicrobial activity against Gram-positive bacteria (MIC down to 2.5 µM) and potent anti-inflammatory effects (inhibition of NO production up to 55%, comparable to dexamethasone). The in vitro and in vivo results also showed that GA-O-02 and GA-O-06 exert their anti-inflammatory activities through downregulation of NO, pro-inflammatory cytokines and chemokines (IL-1ß, IL-6, IL-12, TNF-α, MCP-1 and MIP-1α) and upregulation of anti-inflammatory cytokines (IL-10). The anti-inflammatory mechanism may involve the inhibition of NF-κB, MAPKs and PI3K/Akt related inflammatory signaling pathways and activation of Nrf2/HO-1 signaling pathway. The results demonstrated that GA-O-02 and GA-O-06 possess great application potential as potent antimicrobial and anti-inflammatory agents.


Asunto(s)
Ácido Glicirretínico , Fosfatidilinositol 3-Quinasas , Animales , Antibacterianos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacología , Ratones
7.
Bioorg Chem ; 113: 104981, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34020279

RESUMEN

Oleanolic acid (OA) is a well-known natural product possessing many important pharmacological activities; however, its weak bioactivities significantly restrict the potential application in drug development. The structural modification of oleanolic acid is an effective mean to enhance its bioactivity with lower toxicity but it is challenging. In the present study, we systematically synthesized a series of new 11-oxooleanolic acid derivatives and evaluated their anti-inflammatory activities with a LPS induced BV2 cells inflammation model and a 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced ear inflammation mice model. It was found that compounds 8 and 9 show more potent anti-inflammatory effects than OA and exhibit a low cytotoxicity. The possible mechanism of action was also investigated. The in vitro and in vivo results revealed that these two new 11-oxooleanolic acid derivatives may exert anti-inflammatory activities through the inhibition of NO, pro-inflammatory cytokines and chemokines (IL-1ß, IL-6, IL-12, TNF-α, MCP-1 and MIP-1α) and upregulation of anti-inflammatory cytokines (IL-10), which may be caused by inhibiting the activation of NF-κB, MAPKs and PI3K/Akt related inflammatory signaling pathways and the activation of Nrf2/HO-1 signaling pathway. The results suggest that these two 11-oxooleanolic acid derivatives may be potential candidates for further anti-inflammatory drug development and our study demonstrated an important and practical strategy for drug discovery through the rational modification of natural products.


Asunto(s)
Antiinflamatorios/farmacología , Indoles/farmacología , Ácido Oleanólico/farmacología , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Indoles/síntesis química , Indoles/química , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Ácido Oleanólico/síntesis química , Ácido Oleanólico/química , Relación Estructura-Actividad
8.
Bioorg Chem ; 113: 105030, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089946

RESUMEN

Five new racemic alkyl-benzofuran dimers, (±)-dieupachinins I-M (1-5), were isolated from the root tubers of Eupatorium chinense, a well-known traditional Chinese medicine for the treatment of diphtheria in Guangdong province. The structures of these compounds, especially the first examples of 12,10'-epoxy dimer dieupachinin I (1), 12-nor-dimer dieupachinin J (2), and 12,12'-dinor-dimer dieupachinin K (3), were elucidated by spectroscopic data analysis. Chiral resolution were further carried out on a cellulose column by HPLC, and compounds 2-5 were successfully separated into two enantiomers, respectively. The absolute configurations of (+)-(2-5) and (-)-(2-5) were established by theoretical ECD calculation. All the compounds were evaluated for insulin-stimulated glucose uptake in C2C12 myotubes and (±)-dieupachinin I (1) exhibited the best activity. Compound 1 enhanced insulin-stimulated glucose uptake via activating the insulin receptor substrate 1/protein kinase B/glycogen synthase kinase-3ß signaling pathway. Moreover, all the isolates were tested for their nitric oxygen (NO) inhibitory effects in lipopolysaccharide-treated RAW264.7 macrophages, and compounds (±)-1, (±)-2, and (±)-4 showed promising inhibitory effects with IC50 values of 6.42 ± 1.85, 6.29 ± 1.94, and 16.03 ± 2.07 µM, respectively. (±)-Dieupachinin I (1) again dose-dependently suppressed LPS-induced expression of inducible NO synthase and nuclear translocation of p65.


Asunto(s)
Antiinflamatorios/química , Benzofuranos/química , Eupatorium/química , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Benzofuranos/aislamiento & purificación , Benzofuranos/farmacología , Supervivencia Celular/efectos de los fármacos , Dimerización , Eupatorium/metabolismo , Glucosa/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Medicina Tradicional China , Ratones , Conformación Molecular , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7
9.
Pharmacol Res ; 150: 104454, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31526871

RESUMEN

Zinc(II) complexes of curcumin display moderate cytotoxicity towards cancer cells at low micromolar concentrations. However, the clinical use of zinc(II) complexes is hampered by hydrolytic insolubility and poor bioavailability and their anticancer mechanisms remain unclear. Here, we investigated the efficacy and mechanism of action of a polyvinylpyrrolidone (PVP-k30)-based solid dispersion of Zn(II)-curcumin (ZnCM-SD) against hepatocellular carcinoma (HCC) in vitro and in vivo. In vitro assays revealed ZnCM-SD not only reduced the viability of HepG2 cells and SK-HEP1 cells in a dose-dependent manner, but also potently and synergistically enhanced cell growth inhibition and cell death in response to doxorubicin by regulating cellular zinc homeostasis. ZnCM-SD was internalized into the cells via non-specific endocytosis and degraded to release curcumin and Zn2+ ions within cells. The anticancer effects also occur in vivo in animals following the oral administration of ZnCM-SD, without significantly affecting the weight of the animals. Interestingly, ZnCM-SD did not reduce tumor growth or affect zinc homeostasis in HepG2-bearing mice after gut microbiome depletion. Moreover, administration of ZnCM-SD alone or in combination with doxorubicin significantly attenuated gut dysbiosis and zinc dyshomeostasis in a rat HCC model. Notably, fecal microbiota transplantation revealed the ability of ZnCM-SD to regulate zinc homeostasis and act as a chemosensitizer for doxorubicin were dependent on the gut microbiota. The crucial role of the gut microbiota in the chemosensitizing ability of ZnCM-SD was confirmed by broad-spectrum antibiotic treatment. Collectively, ZnCM-SD could represent a simple, well-tolerated, safe, effective therapy and function as a novel chemosensitizing agent for cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Curcumina/uso terapéutico , Doxorrubicina/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Zinc/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/microbiología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Sinergismo Farmacológico , Trasplante de Microbiota Fecal , Femenino , Microbioma Gastrointestinal/genética , Homeostasis/efectos de los fármacos , Humanos , Íleon/efectos de los fármacos , Íleon/patología , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/microbiología , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos BALB C , ARN Ribosómico 16S/análisis , Ratas Sprague-Dawley , Zinc/sangre , Zinc/química , Zinc/farmacología
10.
Opt Lett ; 43(6): 1299-1302, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543276

RESUMEN

Introducing polarization into transient imaging improves depth estimation in participating media, by discriminating reflective from scattered light transport and calculating depth from the former component only. Previous works have leveraged this approach under the assumption of uniform polarization properties. However, the orientation and intensity of polarization inside scattering media is nonuniform, both in the spatial and temporal domains. As a result of this simplifying assumption, the accuracy of the estimated depth worsens significantly as the optical thickness of the medium increases. In this Letter, we introduce a novel adaptive polarization-difference method for transient imaging, taking into account the nonuniform nature of polarization in scattering media. Our results demonstrate a superior performance for impulse-based transient imaging over previous unpolarized or uniform approaches.

11.
Opt Lett ; 41(17): 3948-51, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27607944

RESUMEN

Reconstructing 3D structure of scenes in the scattering medium is a challenging task with great research value. Existing techniques often impose strong assumptions on the scattering behaviors and are of limited performance. Recently, a low-cost transient imaging system has provided a feasible way to resolve the scene depth, by detecting the reflection instant on the time profile of a surface point. However, in cases with scattering medium, the rays are both reflected and scattered during transmission, and the depth calculated from the time profile largely deviates from the true value. To handle this problem, we used the different polarization behaviors of the reflection and scattering components, and introduced active polarization to separate the reflection component to estimate the scattering robust depth. Our experiments have demonstrated that our approach can accurately reconstruct the 3D structure underlying the scattering medium.

12.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 36(3): 333-8, 2016 Mar.
Artículo en Zh | MEDLINE | ID: mdl-27236892

RESUMEN

OBJECTIVE: To observe the effect of natural type ginsenoside Rg2 (Rg2) and its stereoisomers [20 (R)-Rg2 and 20 (S)-Rg2] at different concentrations on oxygen-glucose deprivation/ reperfusion (OGD/R) induced cortical neuronal injury model in vitro, and to explore the mechanism, and compare their differences of action. METHODS: Cortical neurons after 7-day culture were randomly divided into 5 groups, i.e., the control group, the model group, the Rg2 group, 20 (R) -Rg2 group, and 20 (S) - Rg2 group. Cortical neurons in the Rg2 group, 20 (R)-Rg2 group, and 20(S)-Rg2 group were pretreated with 20, 40, and 80 µmol/L Rg2, 20 (R) -Rg2, and 20 (S) -Rg2 for 24 h to prepare OGD/R model. The cell survival rate, the activity of Caspase-3, the intracellular Ca2+ concentration, contents of superoxide dismutase (SOD) and malondialdehyde (MDA) were detected 24 h later. RESULTS: Compared with the control group, cell survival rates and activities of SOD obviously decreased, the activity of Caspase-3, Ca2+ fluorescent optical gray value, and contents of MDA significantly increased with statistical difference (P < 0.05). Compared with the model group, cell survival rates and activities of SOD obviously increased, the activity of Caspase-3, Ca2+ fluorescent optical gray value, and contents of MDA significantly decreased in 20 µmol/L Rg2 group, 40 µmol/L 20 (R) -Rg2 group, and 80 µmol/L 20 (S) -Rg2 group (P < 0.05). Compared with 20(S)-Rg2 group, cell survival rates increased and contents of MDA significantly decreased in 20, 40, and 80 µmol/L Rg2 and 20 (R)-Rg2 groups (P < 0.05). The activity of Caspase-3 decreased and contents of SOD increased in 80 µmol/L 20 (R)-Rg2 group, and 40, 80 µmol/L Rg2 groups (P < 0.05). Ca2+ fluorescent optical gray value decreased in 40, 80 µmol/L Rg2 and 20 (R)-Rg2 groups (P < 0.05). Compared with 20 (R)-Rg2 group, Ca2+ fluorescent optical gray value decreased in 80 µmol/L Rg2 group (P < 0.05); contents of SOD increased in 40 and 80 µmol/L Rg2 groups (P < 0.05); contents of MDA decreased in 20, 40, and 80 µmol/L Rg2 groups (P < 0.05). CONCLUSIONS: Rg2 and its stereoisomers could improve cell vitality of cortical neurons against OGD/R induced injury. This might be related to improving anti-apoptotic capacities and antioxidant abilities, and reducing Ca2+ inflow. Besides, the neuroprotective effect of 20 (R) -Rg2 was better than that of 20 (S) -Rg2, but inferior to that of Rg2.


Asunto(s)
Ginsenósidos/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Antioxidantes/metabolismo , Apoptosis , Calcio/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular , Células Cultivadas , Glucosa , Humanos , Malondialdehído/metabolismo , Oxígeno , Distribución Aleatoria , Daño por Reperfusión , Estereoisomerismo , Superóxido Dismutasa/metabolismo
13.
J Toxicol Environ Health A ; 78(7): 443-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25785558

RESUMEN

Alveolar macrophages (AM) are the predominant lung cells responsible for both ingestion and clearance of inhaled particulate matter (PM). The aims of this study were (1) to examine effects of fine PM on rat NR8383 cell line apoptosis, and (2) to determine whether NR8383 cell functions are further affected when exposed to fine PM in the presence of inflammation induced by lipopolysaccharide (LPS). Standard Reference Material 2786 (SRM 2786) for fine PM was used to measure the following parameters: cytotoxicity, apoptotic rate, Bax/Bcl-2 expression, nitric oxide (NO) production, and reactive oxygen species (ROS) generation in NR8383 cells. Data showed that SRM 2786 alone induced damage and apoptosis in NR8383 cells in a concentration-dependent manner as demonstrated by significant decrease in expression of Bcl-2 and increase in expression of Bax, suggesting fine PM might trigger apoptosis involving a mitochondria-mediated apoptotic pathway. In addition, there was elevated production of free radicals, such as NO and ROS, suggesting oxidative stress plays a role in the observed apoptotic responses. Further, LPS pretreatment enhanced apoptosis of NR8383 cells induced by SRM 2786. Consequently, data indicate that SRM 2786 triggered cell apoptosis in NR8383 cells, probably by mechanisms involving oxidative stress, as evidenced by elevated NO and ROS levels, while the degree of apoptosis was further aggravated by inflammation.


Asunto(s)
Apoptosis/efectos de los fármacos , Lipopolisacáridos/toxicidad , Macrófagos Alveolares/efectos de los fármacos , Material Particulado/toxicidad , Animales , Línea Celular , Inflamación/inducido químicamente , Inflamación/patología , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
14.
Opt Lett ; 39(4): 937-40, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24562246

RESUMEN

We present a hybrid camera system that combines optical designs with computational processing to achieve content-adaptive high-resolution hyperspectral video acquisition. In particular, we record two video streams: one high-spatial resolution RGB video and one low-spatial resolution hyperspectral video in which the recorded points are dynamically selected using a spatial light modulator (SLM). Then through video-frame registration and a spatio-temporal spreading of the co-located spectral/RGB information, video with high spatial and spectral resolution is produced. The sampling patterns on the SLM are generated on-the-fly according to the scene content, which fully exploits the self-adaptivity of the hybrid camera system. With an experimental prototype, we demonstrate significantly improved accuracy and efficiency as compared to the state-of-the-art.

15.
Front Pharmacol ; 15: 1396641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725660

RESUMEN

Type 2 diabetes mellitus is regarded as a chronic metabolic disease characterized by hyperglycemia. Long-term hyperglycemia may result in oxidative stress, damage pancreatic ß-cell function and induce insulin resistance. Herein we explored the anti-hypoglycemic effects and mechanisms of action of N-p-coumaroyloctopamine (N-p-CO) in vitro and in vivo. N-p-CO exhibited high antioxidant activity, as indicated by the increased activity of SOD, GSH and GSH-Px in HL-7702 cells induced by both high glucose (HG) and palmitic acid (PA). N-p-CO treatment significantly augmented glucose uptake and glycogen synthesis in HG/PA-treated HL-7702 cells. Moreover, administration of N-p-CO in diabetic mice induced by both high-fat diet (HFD) and streptozotocin (STZ) not only significantly increased the antioxidant levels of GSH-PX, SOD and GSH, but also dramatically alleviated hyperglycemia and hepatic glucose metabolism in a dose-dependent manner. More importantly, N-p-CO upregulated the expressions of PI3K, AKT and GSK3ß proteins in both HG/PA-induced HL-7702 cells and HFD/STZ-induced mice. These findings clearly suggest that N-p-CO exerts anti-hypoglycemic and anti-oxidant effects, most probably via the regulation of a PI3K/AKT/GSK3ß signaling pathway. Thus, N-p-CO may have high potentials as a new candidate for the prevention and treatment of diabetes.

16.
Fitoterapia ; 177: 106054, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852891

RESUMEN

Four previously undescribed sesquiterpenoids (1-4), including two natural guaiane-type sesquiterpenoids (1-2), a rearranged guaiane-type sesquiterpenoid (3), and a norsesquiterpenoid (4), were isolated from the ethanol extract of the aerial parts of Pogostemon cablin (Blanco.) Benth. Their chemical structures were determined based on extensive spectroscopic data analysis, including UV, IR, NMR, HRESIMS, and CD spectroscopy. Compound 1 exhibited a good hypoglycemic activity with glucose uptake of 124.3% and 131.2% in myotubes, respectively, at the concentrations of 20 and 40 µM and showed no cytotoxicity. These findings provide a material basis for further research on P. cablin.


Asunto(s)
Hipoglucemiantes , Fitoquímicos , Componentes Aéreos de las Plantas , Pogostemon , Sesquiterpenos , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/química , Componentes Aéreos de las Plantas/química , Estructura Molecular , Animales , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Pogostemon/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Ratones , China , Sesquiterpenos de Guayano
17.
Biomed Pharmacother ; 178: 117262, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111080

RESUMEN

Hepatic fibrosis is intricately associated with dysregulation of gut microbiota and host metabolomes. Our previous studies have demonstrated that matrine can effectively reduce hepatosteatosis and associated disorders. However, it is poorly understood whether the gut microbiota involved in the attenuation of liver fibrosis by matrine. Herein we explored a novel mechanism of how oral administration of matrine alleviates liver fibrosis by modulating gut microbiota. Administration of matrine not only potently ameliorated liver fibrosis in carbon tetrachloride (CCl4)-induced mice, but also significantly preserved hepatic heat shock protein 72 (HSP72) in vivo and in vitro. Matrine was failed to reduce liver fibrosis when HSP72 upregulation was blocked by the HSP72 antagonist VER-155008. Also, consumption of matrine significantly alleviated gut dysbiosis and fecal metabonomic changes in CCl4-treated mice. Transplanted the faces of matrine-treated mice induced a remarkable upregulation of HSP72 and remission of fibrosis in liver in CCl4-exposed mice and inhibition of TGF-ß1-induced inflammatory response and epithelial-mesenchymal transition (EMT) in AML-12 cells. Furthermore, deficiency of HSP72 partly reversed the intestinal microbial composition that prevented matrine from reducing CCl4-induced liver fibrosis in mice. This study reveals the "gut microbiota-hepatic HSP72" axis as a key mechanism of matrine in reducing liver fibrosis and suggest that this axis may be targeted for developing other new therapies for liver fibrosis.


Asunto(s)
Alcaloides , Tetracloruro de Carbono , Microbioma Gastrointestinal , Proteínas del Choque Térmico HSP72 , Cirrosis Hepática , Matrinas , Ratones Endogámicos C57BL , Quinolizinas , Animales , Quinolizinas/farmacología , Alcaloides/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inducido químicamente , Ratones , Masculino , Proteínas del Choque Térmico HSP72/metabolismo , Administración Oral , Disbiosis , Transición Epitelial-Mesenquimal/efectos de los fármacos , Línea Celular , Factor de Crecimiento Transformador beta1/metabolismo
18.
Front Pharmacol ; 15: 1392338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966547

RESUMEN

Introduction: Alcohol consumption alters the diversity and metabolic activities of gut microbiota, leading to intestinal barrier dysfunction and contributing to the development of alcoholic liver disease (ALD), which is the most prevalent cause of advanced liver diseases. In this study, we investigated the protective effects and action mechanism of an aqueous extraction of Pericarpium citri reticulatae and Amomi fructus (PFE) on alcoholic liver injury. Methods: C57BL/6 mice were used to establish the mouse model of alcoholic liver injury and orally administered 500 and 1,000 mg/kg/d of PFE for 2 weeks. Histopathology, immunohistochemistry, immunofluorescence, Western blotting, qRT-PCR, and 16S rDNA amplicon sequencing were used to analyze the mechanism of action of PFE in the treatment of alcohol-induced liver injury. Results: Treatment with PFE significantly improved alcohol-induced liver injury, as illustrated by the normalization of serum alanine aminotransferase, aspartate aminotransferase, total triglyceride, and cholesterol levels in ALD mice in a dose-dependent manner. Administration of PFE not only maintained the intestinal barrier integrity prominently by upregulating mucous production and tight junction protein expressions but also sensibly reversed the dysregulation of intestinal microecology in alcohol-treated mice. Furthermore, PFE treatment significantly reduced hepatic lipopolysaccharide (LPS) and attenuated oxidative stress as well as inflammation related to the TLR4/NF-κB signaling pathway. The PFE supplementation also significantly promoted the production of short-chain fatty acids (SCFAs) in the ALD mice. Conclusion: Administration of PFE effectively prevents alcohol-induced liver injury and may also regulate the LPS-involved gut-liver axis; this could provide valuable insights for the development of drugs to prevent and treat ALD.

19.
Insects ; 15(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38786901

RESUMEN

The overuse of synthetic insecticides has led to various negative consequences, including insecticide resistance, environmental pollution, and harm to public health. This may be ameliorated by using insecticides derived from botanical sources. The primary objective of this study was to evaluate the anti-mosquito activity of the essential oil (EO) of Citrus reticulata Blanco cv. Chachiensis (Chachi) (referred to as CRB) at immature, semi-mature, and mature stages. The chemical compositions of the CRB EO were analyzed using GC-MS. The main components were identified to be D-limonene and γ-terpinene. The contents of D-limonene at the immature, semi-mature, and mature stages were 62.35%, 76.72%, and 73.15%, respectively; the corresponding contents of γ-terpinene were 14.26%, 11.04%, and 11.27%, respectively. In addition, the corresponding contents of a characteristic component, methyl 2-aminobenzoate, were 4.95%, 1.93%, and 2.15%, respectively. CRB EO exhibited significant larvicidal activity against Aedes albopictus (Ae. albopictus, Diptera: Culicidae), with the 50% lethal doses being 65.32, 61.47, and 65.91 mg/L for immature, semi-mature, and mature CRB EO, respectively. CRB EO was able to inhibit acetylcholinesterase and three detoxification enzymes, significantly reduce the diversity of internal microbiota in mosquitoes, and decrease the relative abundance of core species within the microbiota. The present results may provide novel insights into the utilization of plant-derived essential oils in anti-mosquitoes.

20.
Int J Biol Macromol ; 277(Pt 1): 133726, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084973

RESUMEN

Epidemiological and preclinical studies have indicated a factual association between gut microbiota dysbiosis and high incidence of colitis. Dietary polysaccharides can specifically shift the composition of gut microbiome response to colitis. Here we validated the preventive role of polysaccharides from Pericarpium Citri Reticulatae 'Chachiensis' (PCRCP), a well-known traditional Chinese medicine, in colitis induced by dextrose sodium sulfate (DSS) in both rats and mice. We found that treatment with PCRCP not only significantly reduced DSS-induced colitis via down-regulating colonic inflammatory signaling pathways including PI3K-Akt, NLRs and NF-κB, but also enhanced colonic barrier integrity in rats. These protective activities of PCRCP against DSS-induced injuries in rats were in part due to the modulation of the gut microbiota revealed by both broad-spectrum antibiotic (ABX)-deleted bacterial and non-oral treatments. Furthermore, the improvement of PCRCP on colitis was impaired by intestinal neomycin-sensitive bacteria in DSS-exposed mice. Specifically, in vivo and in vitro treatment with PCRCP led to a highly sensible enrichment in the gut commensal Parabacteroides goldsteinii. Administration of Parabacteroides goldsteinii significantly alleviated typical symptoms of colitis and suppressed the activation of PI3K-Akt-involved inflammatory response in DSS-exposed mice. The anti-colitic effects of Parabacteroides goldsteinii were abolished after the activation of PI3K-Akt signaling pathway by lipopolysaccharide treatment in mice exposed to DSS. This study provides new insights into an anti-colitic mechanism driven by PCRCP and highlights the potential prebiotic of Parabacteroides goldsteinii for the prevention of ulcerative colitis.


Asunto(s)
Colitis , Lipopolisacáridos , Fosfatidilinositol 3-Quinasas , Polisacáridos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Ratones , Transducción de Señal/efectos de los fármacos , Ratas , Bacteroidetes/efectos de los fármacos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Sulfato de Dextran , Citrus/química , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA