Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 119(6): 1498-1508, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319094

RESUMEN

Rapid expansion of biopharmaceutical market calls for more efficient and reliable platforms to culture mammalian cells on a large scale. Stirred-tank bioreactors have been widely used for large-scale cell culture. However, it requires months of trials and errors to optimize culture conditions for each cell line. In this article, we extend our earlier studies on rolled scaffold (RS) bioreactors for high-density adherent cell culture and report two new implementations of RSs with greatly enhanced mass-manufacturability, termed as Mesh-RS and Fiber-RS. CHO-K1 cells were successfully expanded in Mesh-RS and Fiber-RS bioreactors with an average growth rate of 1.09 ± 0.04 1/day and 0.95 ± 0.07 1/day, which were higher than those reported in similar studies. Fiber-RS bioreactor exhibited a very high cell density of 72.8 × 106 cells/ml. Besides, a dialyzer was integrated into the RS bioreactor to remove cellular waste and to replenish nutrients without disturbing the cells. By collecting the dialyzed media separately, the dialysis efficiency was significantly improved. In conclusion, the developed RS bioreactor has a strong potential to provide a highly reliable and easily scalable platform for large-scale cell culture in the biopharmaceutical industry.


Asunto(s)
Productos Biológicos , Reactores Biológicos , Animales , Células CHO , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus
2.
Biotechnol J ; 19(8): e2400249, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39212207

RESUMEN

Rapidly expanding biopharmaceutical market demands more cost-effective platforms to produce protein therapeutics. To this end, novel approaches, such as perfusion culture or concentrated fed-batch, have been explored for higher yields and lower manufacturing costs. Although these new approaches produced promising results, but their wide-spread use in the industry is still limited. In this study, a dialysis rolled scaffold bioreactor was presented for long-term production of monoclonal antibodies with reduced media consumption. Media dialysis can selectively remove cellular bio-wastes without losing cells or produced recombinant proteins. The dialysis process was streamlined to significantly improve its efficiency. Then, extended culture of recombinant CHO cells for 41 days was successfully demonstrated with consistent production rate and minimal media consumption. The unique configuration of the developed bioreactor allows efficient dialysis for media management, as well as rapid media exchange to harvest produced recombinant proteins before they degrade. Taken together, it was envisioned that the developed bioreactor will enable cost-effective and long-term large-scale culture of various cells for biopharmaceutical production.


Asunto(s)
Anticuerpos Monoclonales , Reactores Biológicos , Cricetulus , Medios de Cultivo , Proteínas Recombinantes , Células CHO , Anticuerpos Monoclonales/biosíntesis , Animales , Proteínas Recombinantes/biosíntesis , Medios de Cultivo/química , Técnicas de Cultivo Celular por Lotes/métodos , Diálisis/métodos , Técnicas de Cultivo de Célula/métodos , Cricetinae
3.
Nat Commun ; 15(1): 6799, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122744

RESUMEN

Spin-polarized light-emitting diodes (spin-LEDs) convert the electronic spin information to photon circular polarization, offering potential applications including spin amplification, optical communications, and advanced imaging. The conventional control of the emitted light's circular polarization requires a change in the external magnetic field, limiting the operation conditions of spin-LEDs. Here, we demonstrate an atomically thin spin-LED device based on a heterostructure of a monolayer WSe2 and a few-layer antiferromagnetic CrI3, separated by a thin hBN tunneling barrier. The CrI3 and hBN layers polarize the spin of the injected carriers into the WSe2. With the valley optical selection rule in the monolayer WSe2, the electroluminescence exhibits a high degree of circular polarization that follows the CrI3 magnetic states. Importantly, we show an efficient electrical tuning, including a sign reversal, of the electroluminescent circular polarization by applying an electrostatic field due to the electrical tunability of the few-layer CrI3 magnetization. Our results establish a platform to achieve on-demand operation of nanoscale spin-LED and electrical control of helicity for device applications.

4.
Sci Adv ; 10(32): eadn5696, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121229

RESUMEN

The indirect exchange interaction between local magnetic moments via surface electrons has been long predicted to bolster the surface ferromagnetism in magnetic topological insulators (MTIs), which facilitates the quantum anomalous Hall effect. This unconventional effect is critical to determining the operating temperatures of future topotronic devices. However, the experimental confirmation of this mechanism remains elusive, especially in intrinsic MTIs. Here, we combine time-resolved photoemission spectroscopy with time-resolved magneto-optical Kerr effect measurements to elucidate the unique electromagnetism at the surface of an intrinsic MTI MnBi2Te4. Theoretical modeling based on 2D Ruderman-Kittel-Kasuya-Yosida interactions captures the initial quenching of a surface-rooted exchange gap within a factor of two but overestimates the bulk demagnetization by one order of magnitude. This mechanism directly explains the sizable gap in the quasi-2D electronic state and the nonzero residual magnetization in even-layer MnBi2Te4. Furthermore, it leads to efficient light-induced demagnetization comparable to state-of-the-art magnetophotonic crystals, promising an effective manipulation of magnetism and topological orders for future topotronics.

5.
ACS Appl Polym Mater ; 5(9): 7009-7021, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37705714

RESUMEN

Conductive hydrogels have gained a great deal of interest in the flexible electronics industry because of their remarkable inherent properties. However, a significant challenge remains for balancing hydrogel's conductivity, self-healing, and strength properties. Herein, double network ionic hydrogels were fabricated by concurrently introducing borax into dicarboxylic cellulose nanofiber (DCNFs) and polyacrylamide (PAM) hydrogels. The incorporation of borax provided a superabsorbent feature to the PAM/DCNF hydrogels (without borax) with the equilibrium water absorption rate increased from 552 to 1800% after 42 h. The compressive strength of the prepared hydrogel was 935 kPa compared to 132 kPa for the PAM hydrogel, with high cycling stability (stable after 1000 compression cycles with 50% strain). The hydrogel pressure sensor had a very sensitive response (gauge factor = 1.36) in the strain range from 10 to 80%, which made it possible to detect mechanical motion accurately and reliably. The developed hydrogels with high-performance, environmentally friendly properties are promising for use in future artificial skin and human-machine interface applications.

6.
Sci Rep ; 12(1): 204, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997017

RESUMEN

The electrical and optical properties of twisted bilayer graphene (tBLG) depend sensitively on the twist angle. To study the angle dependent properties of the tBLG, currently it is required fabrication of a large number of samples with systematically varied twist angles. Here, we demonstrate the construction of in-situ twistable bilayer graphene, in which the twist angle of the two graphene monolayers can be in-situ tuned continuously in a large range with high precision. The controlled tuning of the twist angle is confirmed by a combination of real-space and spectroscopic characterizations, including atomic force microscopy (AFM) identification of crystal lattice orientation, scanning near-field optical microscopy (SNOM) imaging of superlattice domain walls, and resonant Raman spectroscopy of the largely enhanced G-mode. The developed in-situ twistable homostructure devices enable systematic investigation of the twist angle effects in a single device, thus could largely advance the research of twistronics.

7.
Adv Mater ; 34(28): e2200956, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35560711

RESUMEN

Graphene nanoribbons (GNRs) with widths of a few nanometers are promising candidates for future nanoelectronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometer-long GNRs on insulating substrates, which is essential for the fabrication of nanoelectronic devices, remains an immense challenge. Here, the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalyzed chemical vapor deposition is reported. Ultranarrow GNRs with lengths of up to 10 µm are synthesized. Remarkably, the as-grown GNRs are crystallographically aligned with the h-BN substrate, forming 1D moiré superlattices. Scanning tunneling microscopy reveals an average width of 2 nm and a typical bandgap of ≈1 eV for similar GNRs grown on conducting graphite substrates. Fully atomistic computational simulations support the experimental results and reveal a competition between the formation of GNRs and carbon nanotubes during the nucleation stage, and van der Waals sliding of the GNRs on the h-BN substrate throughout the growth stage. This study provides a scalable, single-step method for growing micrometer-long narrow GNRs on insulating substrates, thus opening a route to explore the performance of high-quality GNR devices and the fundamental physics of 1D moiré superlattices.

8.
Nanoscale ; 13(35): 14628-14635, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533156

RESUMEN

Much of the richness and variety of physics today are based on coupling phenomena where multiple interacting systems hybridize into new ones with completely distinct attributes. Recent development in building van der Waals (vdWs) heterostructures from different 2D materials provides exciting possibilities in realizing novel coupling phenomena in a designable manner. Here, with a graphene/hBN/graphene heterostructure, we report near-field infrared nano-imaging of plasmon-plasmon coupling in two vertically separated graphene layers. Emergent symmetric and anti-symmetric coupling modes are directly observed simultaneously. Coupling and decoupling processes are systematically investigated with experiment, simulation and theory. The reported interlayer plasmon-plasmon coupling could serve as an extra degree of freedom to control light propagation at the deep sub-wavelength scale with low loss and provide exciting opportunities for optical chip integration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA