Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(11): e2106322119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254912

RESUMEN

SignificanceStream/river carbon dioxide (CO2) emission has significant spatial and seasonal variations critical for understanding its macroecosystem controls and plumbing of the terrestrial carbon budget. We relied on direct fluvial CO2 partial pressure measurements and seasonally varying gas transfer velocity and river network surface area estimates to resolve reach-level seasonal variations of the flux at the global scale. The percentage of terrestrial primary production (GPP) shunted into rivers that ultimately contributes to CO2 evasion increases with discharge across regions, due to a stronger response in fluvial CO2 evasion to discharge than GPP. This highlights the importance of hydrology, in particular water throughput, in terrestrial-fluvial carbon transfers and the need to account for this effect in plumbing the terrestrial carbon budget.

2.
Environ Microbiol ; 26(5): e16622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757466

RESUMEN

Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.


Asunto(s)
Bacterias , Óxido Nitroso , Ríos , Óxido Nitroso/metabolismo , Ríos/microbiología , Ríos/química , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Oxidación-Reducción , Filogeografía , Filogenia , Microbiota
3.
Environ Sci Technol ; 58(26): 11695-11706, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38877970

RESUMEN

Aminophenyl sulfone compounds (ASCs) are widely used in various fields, such as the pharmaceutical and textile industries. ASCs and their primary acetylation products are inevitably discharged into the environment. However, the high toxicity of ASCs could be released from the deacetylation of acetylation products. Still, the occurrence and ecological risks of ASCs and their acetylation products remain largely unknown. Here, we integrated all of the existing ASCs based on the core structure, together with their potential acetylation products, to establish a database covering 1105 compounds. By combining the database with R programming, 45 ASCs, sulfonamides, and their acetylation products were identified in the influent and effluent of 19 municipal wastewater treatment plants in 4 cities of China. 13 of them were detected for the first time in the aquatic environment, and 12 acetylation products were newly identified. The cumulative concentrations of 45 compounds in the influent and effluent were in the range of 231-9.96 × 103 and 26-2.70 × 103 ng/L, respectively. The proportion of the unrecognized compounds accounted for 60.6% of the influent and 62.8% of the effluent. Furthermore, nearly half of the ASCs (46.7%), other sulfonamides (49.9%), and their acetylation products (46.2%) were discharged from the effluent, posing a low-to-medium risk to aquatic organisms. The results provide a guideline for future monitoring programs, particularly for sulfadiazine and dronedarone, and emphasize that the ecological risk of ASCs, sulfonamides, and their acetylation products needs to be considered in the aquatic environment.


Asunto(s)
Sulfonamidas , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Sulfonamidas/análisis , Acetilación , Antibacterianos , Eliminación de Residuos Líquidos , China , Sulfonas , Monitoreo del Ambiente
4.
Environ Sci Technol ; 57(48): 19749-19759, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37945339

RESUMEN

Nitrous oxide (N2O) emissions from riverine water columns with suspended particles are important for the global N2O budget. Although sunlight is known to influence the activity of nitrogen-cycling microorganisms, its specific influence on N2O emissions in river systems remains unknown. This study analyzed the influences of light irradiance on N2O emissions in simulated oxic water columns with 15N-labeling and biological molecular techniques. Our results showed that N2O emissions were inhibited by light in the ammonium system (only 15NH4+ was added) and significantly decreased with increasing light irradiance in the nitrate system (only 15NO3- was added), despite contrasting variations in N2 emissions between these two systems. Lower N2O emission rates in the nitrate system under higher light conditions resulted from higher promotion levels of N2O reduction than N2O production. Increased N2O reduction was correlated to higher organic carbon bioavailability caused by photodegradation and greater potential for complete denitrification. Lower N2O production and higher N2O reduction were responsible for the lower N2O emissions observed in the ammonium system under light conditions. Our findings highlight the importance of sunlight in regulating N2O dynamics in riverine water columns, which should be considered in developing large-scale models for N2O processing and emissions in rivers.


Asunto(s)
Compuestos de Amonio , Óxido Nitroso , Óxido Nitroso/análisis , Nitratos , Nitrógeno/análisis , Agua , Suelo
5.
Environ Sci Technol ; 57(9): 3612-3622, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808967

RESUMEN

Warming and exposure to emerging global pollutants, such as per- and polyfluoroalkyl substances (PFAS), are significant stressors in the aquatic ecosystem. However, little is known about the warming effect on the bioaccumulation of PFAS in aquatic organisms. In this study, the pelagic organisms Daphnia magna and zebrafish, and the benthic organism Chironomus plumosus were exposed to 13 PFAS in a sediment-water system with a known amount of each PFAS at different temperatures (16, 20, and 24 °C). The results showed that the steady-state body burden (Cb-ss) of PFAS in pelagic organisms increased with increasing temperatures, mainly attributed to increased water concentrations. The uptake rate constant (ku) and elimination rate constant (ke) in pelagic organisms increased with increasing temperature. In contrast, warming did not significantly change or even mitigate Cb-ss of PFAS in the benthic organism Chironomus plumosus, except for PFPeA and PFHpA, which was consistent with declined sediment concentrations. The mitigation could be explained by the decreased bioaccumulation factor due to a more significant percent increase in ke than ku, especially for long-chain PFAS. This study suggests that the warming effect on the PFAS concentration varies among different media, which should be considered for their ecological risk assessment under climate change.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Animales , Agua , Ecosistema , Bioacumulación , Pez Cebra , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 57(30): 11218-11230, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470751

RESUMEN

Nanoplastics (NPs), as an emerging contaminant, have usually been found charged in the environment, posing threats to aquatic animals. However, the underlying mechanisms governing the gut toxicity of differentially charged NPs to benthic insects are not well understood. In this study, the gut toxicity in larvae of Chironomus kiinensis exposed to negatively charged NPs (PS-COOH, 50 nm) and positively charged NPs (PS-NH2, 50 nm) at 0.1 and 1 g/kg was investigated through fluorescence imaging, histopathology, biochemical approaches, and 16S rRNA sequencing. The results showed that PS-NH2 caused more adverse effect on the larval growth performance and induced more severe oxidative stress, epithelial damage, and inflammatory responses in the gut than PS-COOH. The stronger impact caused by PS-NH2 was because the gut accumulated PS-NH2 more readily than PS-COOH for its negatively charged cell membrane. In addition, PS-NH2 were less agglomerated compared with PS-COOH, leading to an increased interaction with gut cell membranes and microbiota. Furthermore, alpha diversity and relative abundance of the keystone microbiota related to gut barrier and nutrient absorption were markedly lower exposed to PS-NH2 than PS-COOH, indirectly exacerbating stronger gut and growth damage. This study provides novel insights into the effect mechanisms underlying differentially charged NPs on benthic insects.


Asunto(s)
Chironomidae , Microbioma Gastrointestinal , Nanopartículas , Contaminantes Químicos del Agua , Animales , Poliestirenos/toxicidad , Microplásticos , ARN Ribosómico 16S/genética , Insectos , Larva/metabolismo , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad
7.
Environ Sci Technol ; 57(29): 10773-10781, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428517

RESUMEN

Anaerobic bacteria transform aromatic halides through reductive dehalogenation. This dehalorespiration is catalyzed by the supernucleophilic coenzyme vitamin B12, cob(I)alamin, in reductive dehalogenases. So far, the underlying inner-sphere electron transfer (ET) mechanism has been discussed controversially. In the present study, all 36 chloro-, bromo-, and fluorobenzenes and full-size cobalamin are analyzed at the quantum chemical density functional theory level with respect to a wide range of theoretically possible inner-sphere ET mechanisms. The calculated reaction free energies within the framework of CoI···X (X = F, Cl, and Br) attack rule out most of the inner-sphere pathways. The only route with feasible energetics is a proton-coupled two-ET mechanism that involves a B12 side-chain tyrosine (modeled by phenol) as a proton donor. For 12 chlorobenzenes and 9 bromobenzenes with experimental data from Dehalococcoides mccartyi strain CBDB1, the newly proposed PC-TET mechanism successfully discriminates 16 of 17 active from 4 inactive substrates and correctly predicts the observed regiospecificity to 100%. Moreover, fluorobenzenes are predicted to be recalcitrant in agreement with experimental findings. Conceptually, based on the Bell-Evans-Polanyi principle, the computational approach provides novel mechanistic insights and may serve as a tool for predicting the energetic feasibility of reductive aromatic dehalogenation.


Asunto(s)
Chloroflexi , Chloroflexi/metabolismo , Fluorobencenos/metabolismo , Protones , Vitamina B 12/metabolismo , Biodegradación Ambiental
8.
Environ Sci Technol ; 57(18): 7196-7205, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37097256

RESUMEN

Nitrous oxide (N2O), a potent greenhouse gas, is produced in rivers through a series of microbial metabolic pathways. However, the microbial source of N2O production and the degree of N2O reduction in river systems are not well understood and quantified. This work investigated isotopic compositions (δ15N-N2O and δ18O-N2O) and N2O site preference as well as N2O-related microbial features, thereby differentiating the importance of nitrification, denitrification, and N2O reduction in controlling N2O emissions from five rivers on the eastern Qinghai-Tibet Plateau (EQTP). The average N2O concentration in overlying water (15.2 nmol L-1) was close to that in porewater (17.5 nmol L-1), suggesting that both overlying water and sediment are potentially important sources of N2O. Canonical and nitrifier denitrification dominated riverine N2O production, with contribution being approximately 90%. Nitrification is a non-negligible source of N2O production, and N2O concentration was positively correlated with nitrification genetic potential. The degree of N2O reduction ranged from 78.1 to 94.1% (averaging 90%), significantly exceeding the reported values (averaging 70%) in other freshwaters, which was attributed to the higher ratios of organic carbon to nitrogen and lower ratio of (nirS + nirK)/nosZ in EQTP rivers. This study indicates that a combination of isotopic and isotopocule values with functional microbe analysis is useful for quantifying the microbial sources of N2O in rivers, and the intense microbial reduction of N2O significantly accounts for the low N2O emissions observed in EQTP rivers, suggesting that both the production and consumption of N2O in rivers should be considered in the future.


Asunto(s)
Desnitrificación , Ríos , Tibet , Nitrificación , Óxido Nitroso/análisis
9.
Environ Sci Technol ; 57(48): 20182-20193, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37931075

RESUMEN

There is growing evidence that the transformation products of emerging contaminants in foodstuffs may pose a health risk to humans. However, the exact identities, levels, and estimated dietary intake (EDI) of neonicotinoid transformation products in crops remain poorly understood. We established an extended suspect screening strategy to investigate neonicotinoid insecticides and their transformation products in retail cowpea from 11 cities in Hainan Province, China. Forty-nine transformation products were identified in retail cowpea, of which 22-36 were found in 98.6% of the samples. Notably, 31 new transformation products were derived from new processes or a combination of different transformation processes. The mean concentrations of neonicotinoids and nine of the transformation products (with authentic standards) were in the ranges of 0.0824-5.34 and 0.0636-1.50 ng/g, respectively. The cumulative EDIs of the quantified transformation products were lower than those of parent neonicotinoids with the exception of clothianidin desmethyl, which had a ratio of 1157%. However, the coexistence of the other 40 transformation products (without authentic standards) in cowpea suggested that the exposure risk from all of the transformation products might be higher. This study demonstrated that pesticide transformation products should be considered in food chain risk assessments and included in future regulatory management.


Asunto(s)
Insecticidas , Vigna , Humanos , Neonicotinoides , Productos Agrícolas , China , Nitrocompuestos
10.
Phys Chem Chem Phys ; 25(22): 15193-15199, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37227386

RESUMEN

Microbial reductive dechlorination provides a green and highly desirable approach to address the pollution raised by the substantial legacies of polychlorinated biphenyls (PCBs) in soil, sediment, and underground water. It has been shown that the reaction event is catalyzed by supernucleophilic cob(I)alamin housed in reductive dehalogenases (RDases). However, the mechanism still remains elusive. Herein, we unravel the mechanism via quantum chemical calculations, considering a general model of RDase and the dechlorination regioselectivity of two representative PCB congeners, 234-236-CB and 2345-236-CB. The B12-catalzyed reductive dechlorination of PCBs starts with the formation of a reactant complex, followed by a proton-coupled two-electron transfer (PC-TET) and a subsequent single-electron transfer (SET). The PC-TET yields a cob(III)alamin-featured intermediate, which is quickly reduced by the latter SET fueled by significant energetic benefits (∼100 kcal mol-1). It rationalizes the exclusive detection and characterization of cob(I/II)alamins in RDase-mediated dehalogenation experiments. The determined mechanism successfully reproduces the experimental dechlorination regioselectivity and reactivity, as observed with Dehalococcoides mccartyi strain CG1.

11.
Environ Res ; 235: 116689, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474095

RESUMEN

Constituents and functionality of urban inland waters are significantly perturbed by municipal sewage inputs and tailwater discharge from wastewater treatment plants. However, large knowledge gaps persist in understanding greenhouse gas dynamics in urban inland waters due to a lack of in situ measurements. Herein, via a 3-year field campaign (2018-2020), we report river and lake CO2 emission and related aquatic factors regulating the emission in the municipality of Beijing. Mean pCO2 (546 ± 481 µatm) in the two urban lakes was lower than global non-tropical freshwater lakes and CO2 flux in 47% of the lake observations was negative. Though average pCO2 in urban rivers (3124 ± 3846 µatm) was among the higher range of global rivers (1300-4300 µatm), average CO2 flux was much lower than the global river average (99.7 ± 147.5 versus 358.4 mmol m-2 d-1). The high pCO2 cannot release to the atmosphere due to the low gas exchange rate in urban rivers (average k600 of 1.3 ± 1.3 m d-1), resulting in low CO2 flux in urban rivers. Additionally, eutrophication promotes photosynthetic uptake and aquatic organic substrate production, leading to no clear relationships observed between pCO2 and phytoplankton photosynthesis or dissolved organic carbon. In consistence with the findings, CO2 emission accounted for only 32% of the total greenhouse gas (GHG) emission equivalence (CO2, CH4 and N2O) in Beijing waters, in contrast to a major role of anthropogenic CO2 to anthropogenic GHG in the atmosphere in terms of radiative forcing (66%). These results pointed to unique GHG emission profiles and the need for a special account of urban inland waters in terms of aquatic GHG emissions.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Dióxido de Carbono/análisis , Metano/análisis , Lagos , Ríos
12.
Appl Environ Microbiol ; 88(12): e0059722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35638840

RESUMEN

Bacterial biodiversity is tightly correlated with ecological functions of natural systems, and bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning. However, the biogeographic pattern and elevational differentiation of sedimentary bacterial diversity have rarely been studied in cross-river systems at a continental scale. This study analyzed the biogeographic patterns and elevational differentiations of the entire, abundant, and rare bacterial (sub)communities as well as the underlying mechanisms across nine rivers that span distinct geographic regions and large elevational gradients in China. We found that bacterial rare and abundant subcommunities shared similar biogeographic patterns and both demonstrated strong distance-decay relationships, despite their distinct community compositions. However, both null model and variation partitioning analysis results showed that while environmental selection governed rare subcommunity assemblies (contribution: 51.9%), dispersal limitation (62.7%) controlled the assembly of abundant subcommunities. The disparity was associated with the broader threshold width of abundant taxa to water temperature and pH variations than rare taxa. Elevation-induced bacterial composition variations were more evident than latitude-induced ones. Some specific operational taxonomic units (OTUs), representing 16.4% of the total sequences, much preferentially and even exclusively lived in high-elevation or low-elevation habitats and demonstrated some adaptations to local conditions. Greater positive: negative link ratios in bacterial co-occurrence networks of low elevations than high elevations (P < 0.05) partly resulted from their harboring higher organic carbon: nitrogen ratios. Together, this study draws a biogeographic picture of sedimentary bacterial communities in a continental-scale riverine system and highlights the importance of incorporating elevation-associated patterns of microbial diversity into riverine microbial ecology studies. IMPORTANCE Bacterial diversity is tightly correlated with the nutrient cycling of river systems. However, previous studies on bacterial diversity are mainly constrained to one single river system, although microbial biogeography and its drivers exhibit strong spatial scale dependence. Moreover, elevational differentiations of bacterial communities across river systems have also rarely been studied. Bacterial rare and abundant subcommunities make distinct contributions to ecosystem functioning, and they share similar biogeographic patterns in some environments but not in others. Therefore, we explored the biogeography of the entire, abundant, and rare (sub)communities in nine rivers that cover a wide space range and large elevational gradient in China. Our results revealed that bacterial rare and abundant subcommunities shared similar biogeographic patterns but their assembly mechanisms were much different in these rivers. Moreover, bacterial communities showed evident differentiations between high elevations and low elevations. These findings will facilitate a better understanding of bacterial diversity features in river systems.


Asunto(s)
Ecosistema , Ríos , Bacterias/genética , Biodiversidad , China , Ríos/microbiología
13.
Glob Chang Biol ; 28(24): 7270-7285, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36176238

RESUMEN

Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3 - ) and NO3 - concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3 - and NO3 - is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.


Asunto(s)
Nitratos , Óxido Nitroso , Óxido Nitroso/análisis , Nitratos/análisis , Materia Orgánica Disuelta , Monitoreo del Ambiente , Ríos
14.
J Environ Manage ; 312: 114922, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35325740

RESUMEN

Anthropogenic activities can lead to the loss of soil organic carbon (SOC) or improve its storage, hence they have the potential to exacerbate or help mitigate climate change. Urban expansion results in an initial loss of soil carbon, but long-term SOC changes during urban development are poorly understood. Herein, we studied SOC changes in the suburban and urban areas of cities with high levels of urbanization based on a long-term resampling campaign in Beijing, and a compilation of SOC content data from 21 other cities with high levels of urbanization across China over the past three decades. Our results revealed that the SOC of topsoils decreased by 17.2% in the suburban areas and increased by 104.4% in the urban areas of cities with high levels of urbanization. The changes in SOC were positively correlated with the changes in vegetation coverage and productivity. Partial least square method structural equation model analyses showed that changes in vegetation could directly affect SOC changes, and the changes in vegetation coverage and productivity were induced by human activities and climate changes in Beijing. The topsoils in the urban areas of cities with high levels of urbanization can act as carbon sinks due to the increase in vegetation. This study can help improve our understanding of the role of the SOC content of cities within the global C cycle and provide suggestions for achieving the goal of carbon neutrality in China.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Secuestro de Carbono , China , Humanos , Suelo/química , Remodelación Urbana , Urbanización
15.
Bull Environ Contam Toxicol ; 110(1): 9, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512124

RESUMEN

For bioconcentration of hydrophobic organic compounds (HOCs), most of studies assumed that fish absorb HOCs mainly through gills but often ignored the dermal uptake. In this study, deuterated polycyclic aromatic hydrocarbons (PAHs-d10, phenanthrene-d10, and pyrene-d10) and polychlorinated biphenyls (PCB-153) were selected to study whether zebrafish can absorb freely dissolved and dissolved organic matter (DOM)-associated HOCs through dermal uptake. The results showed that the freely dissolved PAHs and PCBs could directly enter the body of zebrafish through its skin. However, PAHs and PCB-153 associated with DOM (~ 10 kDa) could not enter zebrafish through the skin. When gill and dermal exposure coexisted, dermal uptake contributed 2.9 ~ 7.6% and 31.9 ~ 38.4% of PAHs and PCB-153 bioconcentration after exposure for 6 h, respectively. The present study demonstrates that dermal uptake is an important pathway for the bioconcentration of HOCs by fish, which should be considered when studying the toxicodynamics and toxicokinetics of HOCs in organisms.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Pez Cebra/metabolismo , Bioacumulación , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Compuestos Orgánicos
16.
Environ Sci Technol ; 55(2): 1167-1177, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33356194

RESUMEN

Climate warming is seldom considered in the transformation of pesticides on a plant leaf. This study investigated the effects of photodegradation temperature and spinach growth temperature from 15 to 21 °C on the photodegradation of bifenthrin, cypermethrin, fenvalerate, and deltamethrin on spinach leaves under xenon lamp irradiation in climate incubators. The photodegradation temperature had minor effects on pyrethroid photodegradation. Interestingly, the photodegradation rates decreased with increasing spinach growth temperature. For example, the photodegradation rate constant of bifenthrin on a spinach cultivated at 15 °C (3.73 (±0.59, 95% confidence level) × 10-2 h-1) was 1.9 times higher than that at 21 °C (1.96 (±0.17) × 10-2 h-1). Hydroxyl radicals (·OH) played a dominant role in the photodegradation. We speculate that ·OH originated from the degradation of hydroperoxide that was formed by oxidation of phenolic CH═CH, aliphatic CH3 and aromatic C-O-C, and subsequent hydrogen abstraction. The contents of these functional groups decreased with increasing growth temperature, which resulted in lower photodegradation rates at higher growth temperatures. A possible photodegradation pathway including ester bond cleavage, decyanation, and phenyl group removal was proposed. This work provides new insight into the effects of climate warming on the generation of reactive oxygen species and the transformation of pesticides on a plant leaf.


Asunto(s)
Insecticidas , Piretrinas , Fotólisis , Hojas de la Planta , Spinacia oleracea , Temperatura
17.
Environ Sci Technol ; 55(12): 8422-8431, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34018725

RESUMEN

Inland waters are significant sources of nitrous oxide (N2O), a powerful greenhouse gas. However, considerable uncertainty exists in the estimates of N2O efflux from global inland waters due to a lack of direct measurements in urban inland waters, which are generally characterized by high carbon and nitrogen concentrations and low carbon-to-nitrogen ratios. Herein, we present direct measurements of N2O concentrations and fluxes in lakes and rivers of Beijing, China, during 2018-2020. N2O concentrations and fluxes in the waters of Beijing exceeded previous estimates of global rivers due to the high carbon and nutrient concentrations and high aquatic productivity. In contrast, the N2O emission factor (N2O-N/DIN, median 0.0005) was lower than global medians and the N2O yield (ΔN2O/(ΔN2O + ΔN2), average 1.6%) was higher than those typically observed in rivers and streams. The positive relationship between N2O emissions and denitrifying bacteria as well as the Michaelis-Menten relationship between N2O emissions and NO3--N concentrations suggested that bacteria control the net production of N2O in waters of Beijing with N saturation, leading to a low N2O emission factor. However, low carbon-to-nitrogen ratios are beneficial for N2O accumulation during denitrification, resulting in high N2O yields. This study demonstrates the significant N2O emissions and their distinctive patterns and controls in urban inland waters and suggests that N2O emission estimates based on nitrogen loads and simple emission factor values are not appropriate for urban inland water systems.


Asunto(s)
Óxido Nitroso , Ríos , Beijing , China , Lagos , Óxido Nitroso/análisis
18.
Environ Sci Technol ; 55(3): 1930-1940, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448220

RESUMEN

Dietary uptake is important for trophic transfer of polycyclic aromatic hydrocarbons (PAHs) in the freshwater pelagic ecosystem. In this study, we hypothesized that both the dietary uptake rate and interval significantly influenced its relative contribution to bioaccumulation. We developed a toxicokinetic model framework for the bioaccumulation of deuterated PAHs (PAHs-d10) in aquatic organisms considering different feeding intervals ranging from none for phytoplankton to approximately continuous for zooplankton to discrete for fish and built a simple artificial freshwater pelagic food chain composed of algae Chlorella vulgaris, zooplankton Daphnia magna, and zebrafish. We conducted bioaccumulation experiments and simulations for Daphnia magna and zebrafish under different algal densities based on our model. The results showed that intermittent feeding led to a large fluctuation in the PAH-d10 concentrations in zebrafish compared to a leveled-off pattern in Daphnia magna because of approximately continuous feeding. Trophic dilution of PAHs-d10 occurred in the food chain when there was waterborne-only uptake, but dietary uptake largely mitigated its extent that depended on dietary uptake rates. The assimilation efficiency, dietary uptake rate, and its relative contribution to bioaccumulation of PAHs-d10 in zebrafish were all higher than those in Daphnia magna, suggesting that dietary uptake played a more important role in bioaccumulation of PAHs at higher trophic-level organisms.


Asunto(s)
Chlorella vulgaris , Contaminantes Químicos del Agua , Animales , Bioacumulación , Daphnia , Ecosistema , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis , Pez Cebra , Zooplancton
19.
Environ Sci Technol ; 55(21): 14546-14555, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34677952

RESUMEN

Croplands are the largest anthropogenic source of nitrous oxide (N2O), a powerful greenhouse gas that contributes to the growing atmospheric N2O burden. However, few studies provide a comprehensive depiction of future cropland-N2O emissions on a national scale due to a lack of accurate cropland prediction data. Herein, we present a newly developed distributed land-use change prediction model for the high-precision prediction of national-scale land-use change. The high-precision land-use data provide an opportunity to elucidate how the changes in cropland area will affect the magnitude and spatial distribution of N2O emissions from China's croplands during 2020-2070. The results showed a declining trend in China's total cropland-N2O emissions from 0.44 ± 0.03 Tg N/year in 2020 to 0.39 ± 0.07 Tg N/year in 2070, consistent with a cropland area reduction from (1.78 ± 0.02) × 108 ha to (1.40 ± 0.15) × 108 ha. However, approximately 31% of all calculated cities in China would emit more than the present level. Furthermore, different land use and climate change scenarios would have important impacts on cropland-N2O emissions. The Grain for Green Plan implemented in China would effectively control emissions by approximately 12%.


Asunto(s)
Agricultura , Gases de Efecto Invernadero , China , Productos Agrícolas , Gases de Efecto Invernadero/análisis , Óxido Nitroso/análisis , Suelo
20.
J Environ Manage ; 293: 112953, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34102496

RESUMEN

Antibiotics receive many concerns since their negative environmental impacts are being revealed, especially in aqua-agricultural areas. Rainfall events are responsible for transferring excess contaminants to receiving waters. However, the understanding of antibiotics transport and fate responding to rainfall events was constrained by limited event-based data and lacking integrated consideration of dissolved and particulate forms. We developed an intensive monitoring strategy to capture responses of fourteen antibiotics to different types of rainfall events and inter-event low flow periods. Pollutant-rich suspended particles, as high as 1471 ng/g, were found in low flow periods while the very heavy rainfall events and consecutive rainfall events stimulated the release of antibiotics from eroded soil particles to river water. Therefore, these rainfall events drove radical increase of dissolved antibiotic concentration up to 592 ng/L and total flux up to 25.0 g/d. Sulfonamides were particularly sensitive to rainfall events because of their residues in manure-applied agricultural lands. Transport dynamics of most antibiotics were accretion whereas only clarithromycin exhibited a dilution pattern by concentration-discharge relationships. Aquaculture ponds were inferred to significantly contribute tetracycline, oxytetracycline, and clarithromycin. Conventional contaminants were compared to discriminate potential sources of antibiotics and imply effective catchment management. The results provided novel insights into event-based drivers and dynamics of antibiotics and could lead to appropriate management strategy.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Agricultura , Antibacterianos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA