Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 17(2): e0263613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35120178

RESUMEN

In post-stroke patients, muscle synergy (the coordination of motor modules during walking) is impaired. In some patients, the muscle synergy termed module 1 (hip/knee extensors) is merged with module 2 (ankle plantar flexors), and in other cases, module 1 is merged with module 4 (knee flexors). However, post-stroke individuals with a merging pattern of module 3 (hip flexor and ankle dorsiflexor) and module 4, which is the swing-muscle synergy, have not been reported. This study aimed to determine the muscle-synergy merging subtypes of post-stroke during comfortable walking speed (cws). We also examined the effect of experimental lower-limb angle modulation on the muscle synergy patterns of walking in each subtype. Forty-one participants were assessed under three conditions: cws, long stepping on the paretic side (p-long), and long stepping on the non-paretic side (np-long). Lower-limb flexion and extension angles and the electromyogram were measured during walking. Subtype classification was based on the merging pattern of the muscle synergies, and we examined the effect of different lower-limb angles on the muscle synergies. We identified three merging subtypes: module 1 with module 2 (subtype 1), module 1 with module 4 (subtype 2), and module 3 with module 4 (subtype 3). In the cws condition, the lower-limb flexion angle was reduced in subtype 3, and the lower-limb extension angle was decreased in subtype 1. A more complex muscle synergy was observed only in subtype 3 in the p-long condition versus cws (p = 0.036). This subtype classification of walking impairments based on the merging pattern of the muscle synergies could be useful for the selection of a rehabilitation strategy according to the individual's particular neurological condition. Rehabilitation with increased lower-limb flexion may be effective for the training of patients with merging of modules 3 and 4 in comfortable walking.


Asunto(s)
Marcha/fisiología , Músculo Esquelético/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Caminata , Anciano , Electromiografía , Femenino , Trastornos Neurológicos de la Marcha , Humanos , Pierna , Extremidad Inferior , Masculino , Persona de Mediana Edad , Movimiento
2.
Arch Rehabil Res Clin Transl ; 4(2): 100187, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35756980

RESUMEN

Objective: To examine the relationship between temporal asymmetry and complexity of muscle synergy during walking using rhythmic auditory cueing (RAC) and the factors related to changes in muscle synergy during walking with RAC in survivors of stroke. Design: Cross-sectional study. Setting: Wards at 2 medical corporation hospitals. Participants: Forty survivors of stroke (N=40; mean age, 70.4±10.3 years; time since stroke, 72.2±32.3 days) who could walk without physical assistance. Interventions: Not applicable. Main Outcome Measures: The participants were assessed in a random block design under 2 conditions: comfortable walking speed (CWS) and walking with RAC. Single-leg support time, kinematics, and electromyograms were measured. Factors related to the complexity of muscle synergy (variance accounted for by 1 synergy [VAF1]) between the walking conditions were examined using hierarchical multiple regression analysis. Results: In the RAC condition, lower limb flexion and knee flexion angles, single-leg support time on the paretic side, and the symmetry index of single-leg support time were increased compared with those in the CWS condition. VAF1 was decreased in the RAC condition (73.9±0.15) compared with that in the CWS condition (76.9±0.13, P=.002). Hierarchical multiple regression analysis revealed that the change in VAF1 was explained by change in single-leg support time (R 2=0.43, P=.002). Conclusions: The RAC condition demonstrated a more complex representation of muscle synergy than the CWS condition; the change in single-leg support time on the paretic side related to the changes in muscle synergy more than changes in lower limb angle. These findings can help in the walking-training concept to improve muscle synergy deficits in survivors of stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA