Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(5)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38050105

RESUMEN

Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by subtle broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Humanos , Animales , Neuronas/fisiología , Sinapsis/fisiología , Plasticidad Neuronal/fisiología
2.
Brain ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001866

RESUMEN

Mitochondrial and synaptic dysfunction are pathological features of brain aging and cognitive decline. Synaptic mitochondria are vital for meeting the high energy demands of synaptic transmission. However, little is known about the link between age-related metabolic changes and the integrity of synaptic mitochondria. To this end, we investigate the mechanisms of advanced glycation endproducts (AGEs)-mediated mitochondrial and synaptic stress and evaluate the strategies to eliminate these toxic metabolites. Using aged brain and novel transgenic mice overexpressing neuronal glyoxalase 1 (GLO1), we comprehensively analyzed alterations in accumulation/buildup of AGEs and related metabolites in synaptic mitochondria and the association of AGE levels with mitochondrial function. We demonstrate for the first time that synaptic mitochondria are an early and major target of AGEs and the related toxic metabolite methylglyoxal (MG), a precursor of AGEs. MG/AGEs-insulted synaptic mitochondria exhibit deterioration of mitochondrial and synaptic function. Such accumulation of MG/AGEs positively correlated with mitochondrial perturbation and oxidative stress in aging brain. Importantly, clearance of AGEs-related metabolites by enhancing neuronal GLO1, a key enzyme for detoxification/of AGEs, reduces synaptic mitochondrial AGEs accumulation and improves mitochondrial and cognitive function in aging and AGE-challenged mice. Furthermore, we evaluated the direct effect of AGEs on synaptic function in hippocampal neurons in live brain slices as an ex-vivo model and in vitro cultured hippocampal neurons by recording long-term potentiation (LTP) and measuring spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs). Neuronal GLO1 rescues deficits in AGEs-induced synaptic plasticity and transmission by fully recovery of decline in LTP or frequency of mEPSC. These studies explore crosstalk between synaptic mitochondrial dysfunction and age-related metabolic changes relevant to brain aging and cognitive decline. Synaptic mitochondria are particularly susceptible to AGEs-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction in synaptic degeneration in age-related cognitive decline. Thus, augmenting GLO1 function to scavenge toxic metabolites represents a therapeutic approach to reduce age-related AGEs accumulation and to improve mitochondrial function and learning and memory.

3.
Brain ; 147(5): 1710-1725, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38146639

RESUMEN

Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.


Asunto(s)
Enfermedad de Alzheimer , Isoindoles , Mitocondrias , Compuestos de Organoselenio , Peptidil-Prolil Isomerasa F , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Humanos , Cognición/efectos de los fármacos , Azoles/farmacología , Azoles/uso terapéutico , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inhibidores , Ratones Transgénicos , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
4.
Hum Mol Genet ; 31(15): 2498-2507, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35165721

RESUMEN

Tau oligomers (oTau) are thought to precede neurofibrillary tangle formation and likely represent one of the toxic species in disease. This study addresses whether mitochondrial reactive oxygen species (ROS) contribute to tau oligomer accumulation. First, we determined whether elevated oxidative stress correlates with aggregation of tau oligomers in the brain and platelets of human Alzheimer's disease (AD) patient, tauopathy mice, primary cortical neurons from tau mice and human trans-mitochondrial 'cybrid' (cytoplasmic hybrid) neuronal cells, whose mitochondria are derived from platelets of patients with sporadic AD- or mild cognitive impairment (MCI)-derived mitochondria. Increased formation of tau oligomers correlates with elevated ROS levels in the hippocampi of AD patients and tauopathy mice, AD- and MCI-derived mitochondria and AD and MCI cybrid cells. Furthermore, scavenging ROS by application of mito-TEMPO/2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride, a mitochondria-targeted antioxidant, not only inhibits the generation of mitochondrial ROS and rescues mitochondrial respiratory function but also robustly suppresses tau oligomer accumulation in MCI and AD cybrids as well as cortical neurons from tau mice. These studies provide substantial evidence that mitochondria-mediated oxidative stress contributes to tau oligomer formation and accumulation.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/patología , Animales , Humanos , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Hum Mol Genet ; 27(6): 1002-1014, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29329433

RESUMEN

Receptor for Advanced Glycation End products (RAGE) has been implicated in amyloid ß-peptide (Aß)-induced perturbation relevant to the pathogenesis of Alzheimer's disease (AD). However, whether and how RAGE regulates Aß metabolism remains largely unknown. Aß formation arises from aberrant cleavage of amyloid pre-cursor protein (APP) by ß- and γ-secretase. To investigate whether RAGE modulates ß- and γ-secretase activity potentiating Aß formation, we generated mAPP mice with genetic deletion of RAGE (mAPP/RO). These mice displayed reduced cerebral amyloid pathology, inhibited aberrant APP-Aß metabolism by reducing ß- and γ-secretases activity, and attenuated impairment of learning and memory compared with mAPP mice. Similarly, RAGE signal transduction deficient mAPP mice (mAPP/DN-RAGE) exhibited the reduction in Aß40 and Aß42 production and decreased ß-and γ-secretase activity compared with mAPP mice. Furthermore, RAGE-deficient mAPP brain revealed suppression of activation of p38 MAP kinase and glycogen synthase kinase 3ß (GSK3ß). Finally, RAGE siRNA-mediated gene silencing or DN-RAGE-mediated signaling deficiency in the enriched human APP neuronal cells demonstrated suppression of activation of GSK3ß, accompanied with reduction in Aß levels and decrease in ß- and γ-secretases activity. Our findings highlight that RAGE-dependent signaling pathway regulates ß- and γ-secretase cleavage of APP to generate Aß, at least in part through activation of GSK3ß and p38 MAP kinase. RAGE is a potential therapeutic target to limit aberrant APP-Aß metabolism in halting progression of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Biochem Biophys Res Commun ; 514(1): 246-251, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31029428

RESUMEN

Due to the increasing focus on aging as an important risk factor for many serious diseases and an emphasis on animal models that have translational value, an increasing number of animal models are being aged. Animal behavior tests can be used to assess effects of aging in mouse models. Female mice begin exhibiting anxiety-like behaviors at 12 months of age which become more serious at 24 months, while males exhibit no age-induced anxiety-like behaviors. Males and females equally demonstrate a failure of daily task performance at 24 months. Despite these cognitive changes, the mice do not show changes in gross motor function. These results suggest cognitive impairment in non-genetically modified aging mice.


Asunto(s)
Envejecimiento/fisiología , Ansiedad/etiología , Conducta Animal , Envejecimiento/psicología , Animales , Peso Corporal , Femenino , Masculino , Ratones Endogámicos C57BL , Actividad Motora , Comportamiento de Nidificación/fisiología , Análisis y Desempeño de Tareas
7.
Brain ; 140(12): 3233-3251, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29077793

RESUMEN

Mitochondrial dysfunction and synaptic damage are early pathological features of the Alzheimer's disease-affected brain. Memory impairment in Alzheimer's disease is a manifestation of brain pathologies such as accumulation of amyloid-ß peptide and mitochondrial damage. The underlying pathogenic mechanisms and effective disease-modifying therapies for Alzheimer's disease remain elusive. Here, we demonstrate for the first time that decreased PTEN-induced putative kinase 1 (PINK1) expression is associated with Alzheimer's disease pathology. Restoring neuronal PINK1 function strikingly reduces amyloid-ß levels, amyloid-associated pathology, oxidative stress, as well as mitochondrial and synaptic dysfunction. In contrast, PINK1-deficient mAPP mice augmented cerebral amyloid-ß accumulation, mitochondrial abnormalities, impairments in learning and memory, as well as synaptic plasticity at an earlier age than mAPP mice. Notably, gene therapy-mediated PINK1 overexpression promotes the clearance of damaged mitochondria by augmenting autophagy signalling via activation of autophagy receptors (OPTN and NDP52), thereby alleviating amyloid-ß-induced loss of synapses and cognitive decline in Alzheimer's disease mice. Loss of PINK1 activity or blockade of PINK1-mediated signalling (OPTN or NDP52) fails to reverse amyloid-ß-induced detrimental effects. Our findings highlight a novel mechanism by which PINK1-dependent signalling promotes the rescue of amyloid pathology and amyloid-ß-mediated mitochondrial and synaptic dysfunctions in a manner requiring activation of autophagy receptor OPTN or NDP52. Thus, activation of PINK1 may represent a new therapeutic avenue for combating Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Autofagia , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Proteínas del Ojo/metabolismo , Femenino , Terapia Genética , Humanos , Masculino , Proteínas de Transporte de Membrana , Ratones Transgénicos , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
8.
Hum Mol Genet ; 24(18): 5198-210, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26123488

RESUMEN

Accumulation of amyloid-ß (Aß) in synaptic mitochondria is associated with mitochondrial and synaptic injury. The underlying mechanisms and strategies to eliminate Aß and rescue mitochondrial and synaptic defects remain elusive. Presequence protease (PreP), a mitochondrial peptidasome, is a novel mitochondrial Aß degrading enzyme. Here, we demonstrate for the first time that increased expression of active human PreP in cortical neurons attenuates Alzheimer disease's (AD)-like mitochondrial amyloid pathology and synaptic mitochondrial dysfunction, and suppresses mitochondrial oxidative stress. Notably, PreP-overexpressed AD mice show significant reduction in the production of proinflammatory mediators. Accordingly, increased neuronal PreP expression improves learning and memory and synaptic function in vivo AD mice, and alleviates Aß-mediated reduction of long-term potentiation (LTP). Our results provide in vivo evidence that PreP may play an important role in maintaining mitochondrial integrity and function by clearance and degradation of mitochondrial Aß along with the improvement in synaptic and behavioral function in AD mouse model. Thus, enhancing PreP activity/expression may be a new therapeutic avenue for treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Serina Endopeptidasas/metabolismo , Sinapsis/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Conducta Animal , Células Cultivadas , Cognición , Modelos Animales de Enfermedad , Expresión Génica , Mediadores de Inflamación/metabolismo , Ratones , Ratones Transgénicos , Estrés Oxidativo , Proteolisis , Serina Endopeptidasas/genética
9.
Biochim Biophys Acta ; 1852(10 Pt A): 2225-2234, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26232180

RESUMEN

N-methyl d-aspartate receptor (NMDA) subunit 2B (NR2B)-containing NMDA receptors and mitochondrial protein cyclophilin D (CypD) are well characterized in mediating neuronal death after ischemia, respectively. However, whether and how NR2B and CypD work together in mediating synaptic injury after ischemia remains elusive. Using an ex vivo ischemia model of oxygen-glucose deprivation (OGD) in hippocampal slices, we identified a NR2B-dependent mechanism for CypD translocation onto the mitochondrial inner membrane. CypD depletion (CypD null mice) prevented OGD-induced impairment in synaptic transmission recovery. Overexpression of neuronal CypD mice (CypD+) exacerbated OGD-induced loss of synaptic transmission. Inhibition of CypD-dependent mitochondrial permeability transition pore (mPTP) opening by cyclosporine A (CSA) attenuated ischemia-induced synaptic perturbation in CypD+ and non-transgenic (non-Tg) mice. The treatment of antioxidant EUK134 to suppress mitochondrial oxidative stress rescued CypD-mediated synaptic dysfunction following OGD in CypD+ slices. Furthermore, OGD provoked the interaction of CypD with P53, which was enhanced in slices overexpressing CypD but was diminished in CypD-null slices. Inhibition of p53 using a specific inhibitor of p53 (pifithrin-µ) attenuated the CypD/p53 interaction following OGD, along with a restored synaptic transmission in both non-Tg and CypD+ hippocampal slices. Our results indicate that OGD-induced CypD translocation potentiates CypD/P53 interaction in a NR2B dependent manner, promoting oxidative stress and loss of synaptic transmission. We also evaluate a new ex vivo chronic OGD-induced ischemia model for studying the effect of oxidative stress on synaptic damage.

10.
J Neurosci ; 34(26): 8749-60, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24966375

RESUMEN

Ischemia is known to increase the deleterious effect of ß-amyloid (Aß), contributing to early cognitive impairment in Alzheimer's disease. Here, we investigated whether transient ischemia may function as a trigger for Aß-dependent synaptic impairment in the entorhinal cortex (EC), acting through specific cellular signaling. We found that synaptic depression induced by oxygen glucose deprivation (OGD) was enhanced in EC slices either in presence of synthetic oligomeric Aß or in slices from mutant human amyloid precursor protein transgenic mice (mhAPP J20). OGD-induced synaptic depression was ameliorated by functional suppression of RAGE. In particular, overexpression of the dominant-negative form of RAGE targeted to microglia (DNMSR) protects against OGD-induced synaptic impairment in an amyloid-enriched environment, reducing the activation of stress-related kinases (p38MAPK and JNK) and the release of IL-1ß. Our results demonstrate a prominent role for the RAGE-dependent neuroinflammatory pathway in the synaptic failure induced by Aß and triggered by transient ischemia.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Isquemia Encefálica/metabolismo , Corteza Entorrinal/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Corteza Entorrinal/efectos de los fármacos , Humanos , Interleucina-1beta/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Noqueados , Microglía/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Biochim Biophys Acta ; 1842(8): 1267-72, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24055979

RESUMEN

Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimer's disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin D (CypD). Reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aß) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aß neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Terapia Molecular Dirigida , Degeneración Nerviosa/tratamiento farmacológico , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/antagonistas & inhibidores , Ciclofilinas/metabolismo , Humanos , Isquemia/metabolismo , Isquemia/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Modelos Biológicos
12.
Biochim Biophys Acta ; 1842(12 Pt A): 2517-27, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23507145

RESUMEN

The coexistence of neuronal mitochondrial pathology and synaptic dysfunction is an early pathological feature of Alzheimer's disease (AD). Cyclophilin D (CypD), an integral part of mitochondrial permeability transition pore (mPTP), is involved in amyloid beta (Aß)-instigated mitochondrial dysfunction. Blockade of CypD prevents Aß-induced mitochondrial malfunction and the consequent cognitive impairments. Here, we showed the elimination of reactive oxygen species (ROS) by antioxidants probucol or superoxide dismutase (SOD)/catalase blocks Aß-mediated inactivation of protein kinase A (PKA)/cAMP regulatory-element-binding (CREB) signal transduction pathway and loss of synapse, suggesting the detrimental effects of oxidative stress on neuronal PKA/CREB activity. Notably, neurons lacking CypD significantly attenuate Aß-induced ROS. Consequently, CypD-deficient neurons are resistant to Aß-disrupted PKA/CREB signaling by increased PKA activity, phosphorylation of PKA catalytic subunit (PKA C), and CREB. In parallel, lack of CypD protects neurons from Aß-induced loss of synapses and synaptic dysfunction. Furthermore, compared to the mAPP mice, CypD-deficient mAPP mice reveal less inactivation of PKA-CREB activity and increased synaptic density, attenuate abnormalities in dendritic spine maturation, and improve spontaneous synaptic activity. These findings provide new insights into a mechanism in the crosstalk between the CypD-dependent mitochondrial oxidative stress and signaling cascade, leading to synaptic injury, functioning through the PKA/CREB signal transduction pathway.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclofilinas/metabolismo , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Antioxidantes/farmacología , Catalasa/farmacología , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Immunoblotting , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Estrés Oxidativo/efectos de los fármacos , Técnicas de Placa-Clamp , Probucol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/farmacología
13.
Biochim Biophys Acta ; 1842(2): 220-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24252614

RESUMEN

Mitochondrial dysfunction is an early pathological feature of Alzheimer's disease (AD). The underlying mechanisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we observed that AD cybrid cells had significant changes in morphology and function; such changes associate with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activation and mitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aberrant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance. These effects suggest a role of oxidative stress-mediated ERK signal transduction in modulation of mitochondrial fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation with a dominant negative DLP1 (DLP1(K38A)), its expression with siRNA-DLP1, or inhibition of mitochondrial division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1) machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on maintenance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , GTP Fosfohidrolasas/metabolismo , Células Híbridas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Antioxidantes/farmacología , Dinaminas , Femenino , GTP Fosfohidrolasas/genética , Humanos , Células Híbridas/patología , Immunoblotting , Masculino , Proteínas Asociadas a Microtúbulos/genética , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Mutación , Neuronas/metabolismo , Neuronas/patología , Probucol/farmacología , Quinazolinonas/farmacología , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
14.
Biochem Biophys Res Commun ; 468(4): 719-25, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26577411

RESUMEN

Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H2O2-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H2O2-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis.


Asunto(s)
Mitocondrias/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoporosis/metabolismo , Osteoporosis/patología , Estrés Oxidativo , Línea Celular , Células Cultivadas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
15.
BMC Cancer ; 15: 166, 2015 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-25879199

RESUMEN

BACKGROUND: 17ß-hydroxysteroid dehydrogenase type 10 (HSD10) has been shown to play a protective role in cells undergoing stress. Upregulation of HSD10 under nutrient-limiting conditions leads to recovery of a homeostatic state. Across disease states, increased HSD10 levels can have a profound and varied impact, such as beneficial in Parkinson's disease and harmful in Alzheimer's disease. Recently, HSD10 overexpression has been observed in some prostate and bone cancers, consistently correlating with poor patient prognosis. As the role of HSD10 in cancer remains underexplored, we propose that cancer cells utilize this enzyme to promote cancer cell survival under cell death conditions. METHODS: The proliferative effect of HSD10 was examined in transfected pheochromocytoma cells by growth curve analysis and a xenograft model. Fluctuations in mitochondrial bioenergetics were evaluated by electron transport chain complex enzyme activity assays and energy production. Additionally, the effect of HSD10 on pheochromocytoma resistance to cell death was investigated using TUNEL staining, MTT, and complex IV enzyme activity assays. RESULTS: In this study, we examined the tumor-promoting effect of HSD10 in pheochromocytoma cells. Overexpression of HSD10 increased pheochromocytoma cell growth in both in vitro cell culture and an in vivo xenograft mouse model. The increases in respiratory enzymes and energy generation observed in HSD10-overexpressing cells likely supported the accelerated growth rate observed. Furthermore, cells overexpressing HSD10 were more resistant to oxidative stress-induced perturbation. CONCLUSIONS: Our findings demonstrate that overexpression of HSD10 accelerates pheochromocytoma cell growth, enhances cell respiration, and increases cellular resistance to cell death induction. This suggests that blockade of HSD10 may halt and/or prevent cancer growth, thus providing a promising novel target for cancer patients as a screening or therapeutic option.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/genética , Expresión Génica , Feocromocitoma/genética , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Animales , Muerte Celular/genética , Línea Celular Tumoral , Proliferación Celular , Ciclofilinas/metabolismo , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Potencial de la Membrana Mitocondrial/genética , Ratones , Mitocondrias/metabolismo , Biogénesis de Organelos , Estrés Oxidativo/genética , Feocromocitoma/metabolismo , Feocromocitoma/patología , Unión Proteica , Ratas , Transfección
16.
J Chem Inf Model ; 54(3): 902-12, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24555519

RESUMEN

Cyclophilin D (CypD) is a peptidyl prolyl isomerase F that resides in the mitochondrial matrix and associates with the inner mitochondrial membrane during the mitochondrial membrane permeability transition. CypD plays a central role in opening the mitochondrial membrane permeability transition pore (mPTP) leading to cell death and has been linked to Alzheimer's disease (AD). Because CypD interacts with amyloid beta (Aß) to exacerbate mitochondrial and neuronal stress, it is a potential target for drugs to treat AD. Since appropriately designed small organic molecules might bind to CypD and block its interaction with Aß, 20 trial compounds were designed using known procedures that started with fundamental pyrimidine and sulfonamide scaffolds know to have useful therapeutic effects. Two-dimensional (2D) quantitative structure-activity relationship (QSAR) methods were applied to 40 compounds with known IC50 values. These formed a training set and were followed by a trial set of 20 designed compounds. A correlation analysis was carried out comparing the statistics of the measured IC50 with predicted values for both sets. Selectivity-determining descriptors were interpreted graphically in terms of principle component analyses. These descriptors can be very useful for predicting activity enhancement for lead compounds. A 3D pharmacophore model was also created. Molecular dynamics simulations were carried out for the 20 trial compounds with known IC50 values, and molecular descriptors were determined by 2D QSAR studies using the Lipinski rule-of-five. Fifteen of the 20 molecules satisfied all 5 Lipinski rules, and the remaining 5 satisfied 4 of the 5 Lipinski criteria and nearly satisfied the fifth. Our previous use of 2D QSAR, 3D pharmacophore models, and molecular docking experiments to successfully predict activity indicates that this can be a very powerful technique for screening large numbers of new compounds as active drug candidates. These studies will hopefully provide a basis for efficiently designing and screening large numbers of more potent and selective inhibitors for CypD treatment of AD.


Asunto(s)
Ciclofilinas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa
17.
J Alzheimers Dis ; 101(1): 111-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121131

RESUMEN

Background: While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective: We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods: c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results: Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions: Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-fos , Sinapsis , Animales , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Sinapsis/patología , Sinapsis/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratones , Masculino , Femenino , Corteza Visual/metabolismo , Corteza Visual/patología , Ratones Endogámicos C57BL
18.
Biochim Biophys Acta ; 1822(2): 286-92, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22015470

RESUMEN

There has been no extensive characterization of the effects of Ginsenoside Rg1, a pharmacological active component purified from the nature product ginseng, in an Alzheimer's disease mouse model. The well-characterized transgenic Alzheimer disease (AD) mice over expressing amyloid precursor protein (APP)/Aß (Tg mAPP) and nontransgenic (nonTg) littermates at age of 6 and 9 months were treated with Rg 1 for three months via intraperitoneal injection. Mice were then evaluated for changes in amyloid pathology, neuropathology and behavior. Tg mAPP treated with Rg1 showed a significant reduction of cerebral Aß levels, reversal of certain neuropathological changes, and preservation of spatial learning and memory, as compared to vehicle-treated mice. Rg1 treatment inhibited activity of γ-secretase in both Tg mAPP mice and B103-APP cells, indicating the involvement of Rg1 in APP regulation pathway. Furthermore, administration of Rg1 enhanced PKA/CREB pathway activation in mAPP mice and in cultured cortical neurons exposed to Aß or glutamate-mediated synaptic stress. Most importantly, the beneficial effects on attenuation of cerebral Aß accumulation, improvement in neuropathological and behavioral changes can be extended to the aged mAPP mice, even to 12-13 months old mice that had extensive amyloid pathology and severe neuropathological and cognitive malfunction. These studies indicate that Rg1 has profound multi-faced and neuroprotective effects in an AD mouse model. Rg1 induces neuroprotection through ameliorating amyloid pathology, modulating APP process, improving cognition, and activating PKA/CREB signaling. These findings provide a new perspective for the treatment of AD and demonstrate potential for a new class of drugs for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Ginsenósidos/farmacología , Fármacos Neuroprotectores/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cognición/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Humanos , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos
19.
Proc Natl Acad Sci U S A ; 107(43): 18670-5, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20937894

RESUMEN

Synaptic dysfunction and the loss of synapses are early pathological features of Alzheimer's disease (AD). Synapses are sites of high energy demand and extensive calcium fluctuations; accordingly, synaptic transmission requires high levels of ATP and constant calcium fluctuation. Thus, synaptic mitochondria are vital for maintenance of synaptic function and transmission through normal mitochondrial energy metabolism, distribution and trafficking, and through synaptic calcium modulation. To date, there has been no extensive analysis of alterations in synaptic mitochondria associated with amyloid pathology in an amyloid ß (Aß)-rich milieu. Here, we identified differences in mitochondrial properties and function of synaptic vs. nonsynaptic mitochondrial populations in the transgenic mouse brain, which overexpresses the human mutant form of amyloid precursor protein and Aß. Compared with nonsynaptic mitochondria, synaptic mitochondria showed a greater degree of age-dependent accumulation of Aß and mitochondrial alterations. The synaptic mitochondrial pool of Aß was detected at an age as young as 4 mo, well before the onset of nonsynaptic mitochondrial and extensive extracellular Aß accumulation. Aß-insulted synaptic mitochondria revealed early deficits in mitochondrial function, as shown by increased mitochondrial permeability transition, decline in both respiratory function and activity of cytochrome c oxidase, and increased mitochondrial oxidative stress. Furthermore, a low concentration of Aß (200 nM) significantly interfered with mitochondrial distribution and trafficking in axons. These results demonstrate that synaptic mitochondria, especially Aß-rich synaptic mitochondria, are more susceptible to Aß-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction relevant to the development of synaptic degeneration in AD.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Mitocondrias/metabolismo , Sinapsis/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Axones/metabolismo , Axones/ultraestructura , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Microscopía Inmunoelectrónica , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Estrés Oxidativo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinapsis/ultraestructura , Factores de Tiempo
20.
Drug Discov Today Ther Strateg ; 10(2): e91-e98, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25558270

RESUMEN

Mitochondria are well-known cellular organelles widely studied in relation to a variety of disease states, including Alzheimer's disease. With roles in several metabolic processes, numerous signal transduction pathways, and overall cell maintenance and survival, mitochondria are essential to understanding the inner workings of cells. As mitochondria are able to be utilized by diverse illnesses to increase the likelihood of disease progression, targeting specific processes in these organelles could provide beneficial therapeutic options.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA