Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 617(7960): 299-305, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100908

RESUMEN

The enhancement of separation processes and electrochemical technologies such as water electrolysers1,2, fuel cells3,4, redox flow batteries5,6 and ion-capture electrodialysis7 depends on the development of low-resistance and high-selectivity ion-transport membranes. The transport of ions through these membranes depends on the overall energy barriers imposed by the collective interplay of pore architecture and pore-analyte interaction8,9. However, it remains challenging to design efficient, scaleable and low-cost selective ion-transport membranes that provide ion channels for low-energy-barrier transport. Here we pursue a strategy that allows the diffusion limit of ions in water to be approached for large-area, free-standing, synthetic membranes using covalently bonded polymer frameworks with rigidity-confined ion channels. The near-frictionless ion flow is synergistically fulfilled by robust micropore confinement and multi-interaction between ion and membrane, which afford, for instance, a Na+ diffusion coefficient of 1.18 × 10-9 m2 s-1, close to the value in pure water at infinite dilution, and an area-specific membrane resistance as low as 0.17 Ω cm2. We demonstrate highly efficient membranes in rapidly charging aqueous organic redox flow batteries that deliver both high energy efficiency and high-capacity utilization at extremely high current densities (up to 500 mA cm-2), and also that avoid crossover-induced capacity decay. This membrane design concept may be broadly applicable to membranes for a wide range of electrochemical devices and for precise molecular separation.

2.
Angew Chem Int Ed Engl ; : e202409322, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39195347

RESUMEN

Metallic zinc has emerged as a promising anode material for high-energy battery systems due to its high theoretical capacity (820 mA h g-1), low redox potential for two-electron reactions, cost-effectiveness and inherent safety. However, current zinc metal batteries face challenges in low coulombic efficiency and limited longevity due to uncontrollable dendrite growth, the corrosive hydrogen evolution reaction (HER) and decomposition of the aqueous ZnSO4 electrolyte. Here, we report an interfacial-engineering approach to mitigate dendrite growth and reduce corrosive reactions through the design of ultrathin selective membranes coated on the zinc anodes. The submicron-thick membranes derived from polymers of intrinsic microporosity (PIMs), featuring pores with tunable interconnectivity, facilitate regulated transport of Zn2+-ions, thereby promoting a uniform plating/stripping process. Benefiting from the protection by PIM membranes, zinc symmetric cells deliver a stable cycling performance over 1500 h at 1 mA/cm² with a capacity of 0.5 mAh while full cells with NaMnO2 cathode operate stably at 1 A g-1 over 300 cycles without capacity decay. Our work represents a new strategy of preparing multi-functional membranes that can advance the development of safe and stable zinc metal batteries.

3.
J Am Chem Soc ; 144(37): 17198-17208, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36074146

RESUMEN

Redox-active organic materials have emerged as promising alternatives to conventional inorganic electrode materials in electrochemical devices for energy storage. However, the deployment of redox-active organic materials in practical lithium-ion battery devices is hindered by their undesired solubility in electrolyte solvents, sluggish charge transfer and mass transport, as well as processing complexity. Here, we report a new molecular engineering approach to prepare redox-active polymers of intrinsic microporosity (PIMs) that possess an open network of subnanometer pores and abundant accessible carbonyl-based redox sites for fast lithium-ion transport and storage. Redox-active PIMs can be solution-processed into thin films and polymer-carbon composites with a homogeneously dispersed microstructure while remaining insoluble in electrolyte solvents. Solution-processed redox-active PIM electrodes demonstrate improved cycling performance in lithium-ion batteries with no apparent capacity decay. Redox-active PIMs with combined properties of intrinsic microporosity, reversible redox activity, and solution processability may have broad utility in a variety of electrochemical devices for energy storage, sensors, and electronic applications.

4.
Angew Chem Int Ed Engl ; 61(38): e202207580, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35876472

RESUMEN

Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.

6.
Nat Mater ; 19(2): 195-202, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31792424

RESUMEN

Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger's base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.

7.
ACS Nano ; 18(8): 6016-6027, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38349043

RESUMEN

Ion exchange membranes allowing the passage of charge-carrying ions have established their critical role in water, environmental, and energy-relevant applications. The design strategies for high-performance ion exchange membranes have evolved beyond creating microphase-separated membrane morphologies, which include advanced ion exchange membranes to ion-selective membranes. The properties and functions of ion-selective membranes have been repeatedly updated by the emergence of materials with subnanometer-sized pores and the understanding of ion movement under confined micropore ion channels. These research progresses have motivated researchers to consider even greater aims in the field, i.e., replicating the functions of ion channels in living cells with exotic materials or at least targeting fast and ion-specific transmembrane conduction. To help realize such goals, we briefly outline and comment on the fundamentals of rationally designing membrane pore channels for ultrafast and specific ion conduction, pore architecture/chemistry, and membrane materials. Challenges are discussed, and perspectives and outlooks are given.

8.
Chem Sci ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39211740

RESUMEN

Triptycene derivatives are used extensively in supramolecular and materials chemistry, however, most are prepared using a multi-step synthesis involving the generation of a benzyne intermediate, which hinders production on a large scale. Inspired by the ease of the synthesis of resorcinarenes, we report the rapid and efficient preparation of triptycene-like 1,6,2',7'-tetrahydroxynaphthopleiadene directly from 2,7-dihydroxynaphthalene and phthalaldehyde. Structural characterisation confirms the novel bridged bicyclic framework, within which the planes of the single benzene ring and two naphthalene units are fixed at an angle of ∼120° relative to each other. Other combinations of aromatic 1,2-dialdehydes and 2,7-disubstituted naphthalenes also provided similar triptycene-like products. The low cost of the precursors and undemanding reaction conditions allow for rapid multigram synthesis of 1,6,2',7'-tetrahydroxynaphthopleiadene, which is shown to be a useful precursor for making the parent naphthopleiadene hydrocarbon. The great potential for the use of the naphthopleiadene scaffold in supramolecular and polymer chemistry is demonstrated by the preparation of a rigid novel cavitand, a microporous network polymer, and a solution-processable polymer of intrinsic microporosity.

9.
Adv Mater ; 35(12): e2210098, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634684

RESUMEN

Redox flow batteries (RFBs) have great potential for long-duration grid-scale energy storage. Ion-conducting membranes are a crucial component in RFBs, allowing charge-carrying ions to transport while preventing the cross-mixing of redox couples. Commercial Nafion membranes are widely used in RFBs, but their unsatisfactory ionic and molecular selectivity, as well as high costs, limit the performance and the widespread deployment of this technology. To extend the longevity and reduce the cost of RFB systems, inexpensive ion-selective membranes that concurrently deliver low ionic resistance and high selectivity toward redox-active species are highly desired. Here, high-performance RFB membranes are fabricated from blends of carboxylate- and amidoxime-functionalized polymers of intrinsic microporosity, which exploit the beneficial properties of both polymers. The enthalpy-driven formation of cohesive interchain interactions, including hydrogen bonds and salt bridges, facilitates the microscopic miscibility of the blends, while ionizable functional groups within the sub-nanometer pores allow optimization of membrane ion-transport functions. The resulting microporous membranes demonstrate fast cation conduction with low crossover of redox-active molecular species, enabling improved power ratings and reduced capacity fade in aqueous RFBs using anthraquinone and ferrocyanide as redox couples.

10.
Adv Sci (Weinh) ; 10(20): e2206888, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178400

RESUMEN

Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems.

11.
Information (Basel) ; 13(11)2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37009525

RESUMEN

Many systems for exploratory and visual data analytics require platform-dependent software installation, coding skills, and analytical expertise. The rapid advances in data-acquisition, web-based information, and communication and computation technologies promoted the explosive growth of online services and tools implementing novel solutions for interactive data exploration and visualization. However, web-based solutions for visual analytics remain scattered and relatively problem-specific. This leads to per-case re-implementations of common components, system architectures, and user interfaces, rather than focusing on innovation and building sophisticated applications for visual analytics. In this paper, we present the Statistics Online Computational Resource Analytical Toolbox (SOCRAT), a dynamic, flexible, and extensible web-based visual analytics framework. The SOCRAT platform is designed and implemented using multi-level modularity and declarative specifications. This enables easy integration of a number of components for data management, analysis, and visualization. SOCRAT benefits from the diverse landscape of existing in-browser solutions by combining them with flexible template modules into a unique, powerful, and feature-rich visual analytics toolbox. The platform integrates a number of independently developed tools for data import, display, storage, interactive visualization, statistical analysis, and machine learning. Various use cases demonstrate the unique features of SOCRAT for visual and statistical analysis of heterogeneous types of data.

12.
Nat Commun ; 13(1): 3184, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676263

RESUMEN

Redox flow batteries using aqueous organic-based electrolytes are promising candidates for developing cost-effective grid-scale energy storage devices. However, a significant drawback of these batteries is the cross-mixing of active species through the membrane, which causes battery performance degradation. To overcome this issue, here we report size-selective ion-exchange membranes prepared by sulfonation of a spirobifluorene-based microporous polymer and demonstrate their efficient ion sieving functions in flow batteries. The spirobifluorene unit allows control over the degree of sulfonation to optimize the transport of cations, whilst the microporous structure inhibits the crossover of organic molecules via molecular sieving. Furthermore, the enhanced membrane selectivity mitigates the crossover-induced capacity decay whilst maintaining good ionic conductivity for aqueous electrolyte solution at pH 9, where the redox-active organic molecules show long-term stability. We also prove the boosting effect of the membranes on the energy efficiency and peak power density of the aqueous redox flow battery, which shows stable operation for about 120 h (i.e., 2100 charge-discharge cycles at 100 mA cm-2) in a laboratory-scale cell.

13.
ACS Appl Mater Interfaces ; 8(10): 6693-700, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26901491

RESUMEN

The poor dispensability of pristine carbon nanotubes in water impedes their implications in thin-film nanocomposite membranes for crucial utilities such as water purification. In this work, high-flux positively charged nanocomposite nanofiltration membranes were exploited by uniformly embedding poly(dopamine) modified multiwall carbon nanotubes (PDA-MWCNTs) in polyamide thin-film composite membranes. With poly(dopamine) modification, fine dispersion of MWCNTs in polyethyleneimine (PEI) aqueous solutions was achieved, which was interracially polymerized with trimesoyl chloride (TMC) n-hexane solutions to prepare nanocomposite membranes. The compatibility and interactions between modified MWCNTs and polyamide matrix were enhanced, attributed to the poly(dopamine) coatings on MWCNT surfaces, leading to significantly improved water permeability. At optimized conditions, pure water permeability of the PEI/PDA-MWCNTs/TMC nanofiltration membrane (M-4) was 15.32 L m(-2) h(-1) bar(-1), which was ∼1.6 times increased compared with that of pristine PEI/TMC membranes. Salt rejection of M-4 to different multivalent cations decreased in the sequence ZnCl2 (93.0%) > MgCl2 (91.5%) > CuCl2 (90.5%) ≈ CaCl2, which is well-suited for water softening and heavy metal ion removal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA