Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065865

RESUMEN

With the continuous advancement of sensing technology, applying large amounts of sensor data to practical prediction processes using artificial intelligence methods has become a developmental direction. In sensing images and remote sensing meteorological data, the dynamic changes in the prediction targets relative to their background information often exhibit more significant dynamic characteristics. Previous prediction methods did not specifically analyze and study the dynamic change information of prediction targets at spatiotemporal multi-scale. Therefore, this paper proposes a neural prediction network based on perceptual multi-scale spatiotemporal dynamic changes (PMSTD-Net). By designing Multi-Scale Space Motion Change Attention Unit (MCAU) to perceive the local situation and spatial displacement dynamic features of prediction targets at different scales, attention is ensured on capturing the dynamic information in their spatial dimensions adequately. On this basis, this paper proposes Multi-Scale Spatiotemporal Evolution Attention (MSEA) unit, which further integrates the spatial change features perceived by MCAU units in higher channel dimensions, and learns the spatiotemporal evolution characteristics at different scales, effectively predicting the dynamic characteristics and regularities of targets in sensor information.Through experiments on spatiotemporal prediction standard datasets such as Moving MNIST, video prediction dataset KTH, and Human3.6m, PMSTD-Net demonstrates prediction performance surpassing previous methods. We construct the GPM satellite remote sensing precipitation dataset, demonstrating the network's advantages in perceiving multi-scale spatiotemporal dynamic changes in remote sensing meteorological data. Finally, through extensive ablation experiments, the performance of each module in PMSTD-Net is thoroughly validated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA