Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutr Res Rev ; 35(1): 28-38, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33818349

RESUMEN

The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) poses a growing challenge in terms of its prevention and treatment. The 'multiple hits' hypothesis of multiple insults, such as dietary fat intake, de novo lipogenesis, insulin resistance, oxidative stress, mitochondrial dysfunction, gut dysbiosis and hepatic inflammation, can provide a more accurate explanation of the pathogenesis of NAFLD. Betaine plays important roles in regulating the genes associated with NAFLD through anti-inflammatory effects, increased free fatty oxidation, anti-lipogenic effects and improved insulin resistance and mitochondrial function; however, the mechanism of betaine remains elusive.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Betaína/metabolismo , Betaína/farmacología , Betaína/uso terapéutico , Humanos , Lipogénesis , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología
2.
Eur J Nutr ; 60(3): 1655-1668, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32808060

RESUMEN

PURPOSE: Nonalcoholic fatty liver disease (NAFLD) is currently the leading cause of chronic liver disease in developing countries. The pathogenesis is complex, and there is currently no effective treatment. Betaine is an essential intermediate in choline catabolism and an important component of the methionine cycle. Betaine deficiency is associated with NAFLD severity, and its mechanism needs to be further elaborated. METHODS: In this study, an NAFLD mouse model was established by feeding ApoE-/- mice a high-fat diet. The effects of betaine on NAFLD were investigated, including its mechanism. RESULTS: In this study, after treatment with betaine, blood lipid levels and liver damage were significantly decreased in the NAFLD mouse model. The fat infiltration of the liver tissues of high-fat diet (HFD)-fed mice after betaine administration was significantly improved. Betaine treatment significantly upregulated AMP-activated protein kinase (AMPK), fibroblast growth factor 10 (FGF10), and adipose triglyceride lipase (ATGL) protein levels both in vivo and in vitro and suppressed lipid metabolism-related genes. Furthermore, the overexpression of FGF10 increased the protein level of AMPK and decreased lipid accumulation in HepG2 cells. CONCLUSION: Taken together, the data strongly suggest that betaine significantly prevents high-fat diet-induced NAFLD through the FGF10/AMPK signaling pathway in ApoE-/- mice.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apolipoproteínas E/metabolismo , Betaína , Dieta Alta en Grasa/efectos adversos , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Transducción de Señal
3.
Exp Ther Med ; 20(6): 145, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33093883

RESUMEN

Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are a promising tool to attenuate cisplatin (CP)-induced acute kidney injury (AKI). However, whether the transplantation of human cord blood mononuclear cells (hCBMNCs) exhibits similar protective effects and their potential underlying mechanisms of action remain unclear. The present study aimed to determine the protective effects of hUCMSCs and hCBMNCs transplantation therapies on an established CP-induced rat model and explore their underlying mechanisms of action. A total of 24 Sprague-Dawley rats, selected based on body weight, were randomly assigned into 4 groups: i) normal control; ii) model (CP); iii) hCBMNCs (CP + hCBMNCs); and iv) hUCMSCs (CP + hUCMSCs). hUCMSCs (2.0x106 cells) and hCBMNCs (2.0x106 cells) were injected into the femoral vein of rats 24 h after CP (8 mg/kg) treatment. To determine the effects of hCBMNCs and hUCMSCs on CP-induced rats, renal function assessment and histological evaluations were performed. Expression levels of high mobility group box 1 (HMGB1) and the ratio of Bax/Bcl2 in renal tissues were detected to elucidate their underlying molecular mechanisms of action. The results demonstrated that transplantation of hUCMSCs and hCBMNCs significantly improved renal function in CP-induced AKI rats, as evidenced by the enhancement of renal morphology; decreased concentrations of blood urea nitrogen and serum creatinine; and a lower percentage of apoptotic renal tubular cells. The expression of HMGB1 and the ratio of Bax/Bcl-2 were significantly reduced in the hUCMSCs and hCBMNCs groups compared with CP group. In conclusion, the present study indicated that hCBMNCs exert similar protective effects to hUCMSCs on CP-induced AKI. hUCMSCs and hCBMNCs protect against CP-induced AKI by suppressing HMGB1 expression and preventing cell apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA