Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.230
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Gene Med ; 26(9): e3723, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39228142

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) remains a formidable challenge in oncology, with its pathogenesis and progression influenced by myriad factors. Among them, the pervasive organic synthetic compound, bisphenol A (BPA), previously linked with various adverse health effects, has been speculated to play a role. This study endeavors to elucidate the complex interplay between BPA, the immune microenvironment of HCC, and the broader molecular landscape of this malignancy. METHODS: A comprehensive analysis was undertaken using data procured from both The Cancer Genome Atlas and the Comparative Toxicogenomics Database. Rigorous differential expression analyses were executed, supplemented by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. In addition, single-sample gene set enrichment analysis, gene set enrichment analysis and gene set variation analysis were employed to reveal potential molecular links and insights. Immune infiltration patterns were delineated, and a series of in vitro experiments on HCC cells were conducted to directly assess the impact of BPA exposure. RESULTS: Our findings unveiled a diverse array of active immune cells and functions within HCC. Distinct correlations emerged between high-immune-related scores, established markers of the tumor microenvironment and the expression of immune checkpoint genes. A significant discovery was the identification of key genes simultaneously associated with immune-related pathways and BPA exposure. Leveraging these genes, a prognostic model was crafted, offering predictive insights into HCC patient outcomes. Intriguingly, in vitro studies suggested that BPA exposure could promote proliferation in HCC cells. CONCLUSION: This research underscores the multifaceted nature of HCC's immune microenvironment and sheds light on BPA's potential modulatory effects therein. The constructed prognostic model, if validated further, could serve as a robust tool for risk stratification in HCC, potentially guiding therapeutic strategies. Furthermore, the implications of the findings for immunotherapy are profound, suggesting new avenues for enhancing treatment efficacy. As the battle against HCC continues, understanding of environmental modulators like BPA becomes increasingly pivotal.


Asunto(s)
Compuestos de Bencidrilo , Carcinoma Hepatocelular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Fenoles , Microambiente Tumoral , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Compuestos de Bencidrilo/efectos adversos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Fenoles/efectos adversos , Fenoles/toxicidad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética
2.
Toxicol Appl Pharmacol ; 482: 116776, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043803

RESUMEN

Bisphenol A (BPA) has been implicated in cognitive impairment. Icariin is the main active ingredient extracted from Epimedium Herb with protective function of nervous system. However, the potential therapeutic effects of Icariin on spatial memory deficits induced by developmental BPA exposure in Sprague-Dawley rats have not been investigated. This study investigated the therapeutic effect of Icariin (10 mg/kg/day, from postnatal day (PND) 21 to PND 60 by gavage) on spatial memory deficits in rat induced by developmental BPA exposure (1 mg/kg/day, from embryonic to PND 60), demonstrating that Icariin can markedly improve spatial memory in BPA-exposed rat. Furthermore, intra-gastric administration of Icariin could attenuate abnormal hippocampal cell dispersion and loss, improved the dendritic spine density and Nissl bodies. Moreover, Icariin reversed BPA induced reduction of frequency of miniature excitatory postsynaptic currents(mEPSC) and decrease of Vesicular glutamate transporter 1(VGlut1). Collectively, Icariin could effectively rescue BPA-induced spatial memory impairment in male rats by preventing cell loss and reduction of dendritic spines in the hippocampus. In addition, we also found that VGlut1 is a critical target in the repair of BPA-induced spatial memory by Icariin. Thus, Icariin may be a promising therapeutic agent to attenuate BPA-induced spatial memory deficits.


Asunto(s)
Flavonoides , Hipocampo , Fenoles , Memoria Espacial , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Compuestos de Bencidrilo/toxicidad , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Aprendizaje por Laberinto
3.
Mol Cell Biochem ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941031

RESUMEN

Bisphenol A (BPA), a common endocrine-disrupting chemical, is found in a wide range of home plastics. Early-life BPA exposure has been linked to neurodevelopmental disorders; however, the link between neuroinflammation, pyroptosis, and the development of psychiatric disorders is rarely studied. The current study attempted to investigate the toxic effect of BPA on inflammatory and microglial activation markers, as well as behavioral responses, in the brains of male rats in a dose- and age-dependent manner. Early BPA exposure began on postnatal day (PND) 18 at dosages of 50 and 125 mg/kg/day. We started with a battery of behavioral activities, including open field, elevated plus- and Y-maze tests, performed on young PND 60 rats and adult PND 95 rats. BPA causes anxiogenic-related behaviors, as well as cognitive and memory deficits. The in vivo and in silico analyses revealed for the first time that BPA is a substantial activator of nuclear factor kappa B (NF-κB), interleukin (IL)-1ß, -2, -12, cyclooxygenase-2, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with higher beclin-1 and LC3B levels in BPA rats' PFC and hippocampus. Furthermore, BPA increased the co-localization of caspase-1 immunoreactive neurons, as well as unique neurodegenerative histopathological hallmarks. In conclusion, our results support the hypothesis that neuroinflammation and microglial activation are involved with changes in the brain after postnatal BPA exposure and that these alterations may be linked to the development of psychiatric conditions later in life. Collectively, our findings indicate that BPA triggers anxiety-like behaviors and pyroptotic death of nerve cells via the NF-κB/IL-1ß/NLRP3/Caspase-1 pathway.

4.
Pharmacol Res ; 204: 107201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704108

RESUMEN

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Asunto(s)
Estrógenos , Terapia por Ejercicio , Trastornos Mentales , Animales , Humanos , Estrógenos/metabolismo , Ejercicio Físico/fisiología , Trastornos Mentales/metabolismo , Trastornos Mentales/terapia , Receptores de Estrógenos/metabolismo , Transducción de Señal
5.
Environ Sci Technol ; 58(25): 10910-10919, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38862419

RESUMEN

With the widespread use of bisphenol A (BPA) analogs, their health risks have attracted attention. The effects of maternal BPA analogs exposure on glucose homeostasis in adult offspring and the underlying fetal origins require further exploration. Herein, we exposed pregnant mice to two types of BPA analogs─BPB and BPAF; we evaluated glucose homeostasis in adult offspring and maternal-fetal glucose transport by testing intraperitoneal glucose tolerance, determining glucose and glycogen contents, conducting positron emission tomography (PET)/computed tomography (CT), detecting expression of placental nutrient transport factors, and assessing placental barrier status. We observed that adult female offspring maternally exposed to BPB and BPAF exhibited low fasting blood glucose in adulthood, with even abnormal glucose tolerance in the BPAF group. This phenomenon can be traced back to the elevated fetal glucose induced by the increased efficiency of placenta glucose transport in late pregnancy. On the other hand, the expression of genes associated with vascular development and glucose transport was significantly altered in the placenta in the BPAF group, potentially contributing to enhanced fetal glucose. These findings provide preliminary insights into potential mechanisms underlying the disturbance of glucose metabolism in adult female offspring mice induced by maternal exposure to BPA analogs.


Asunto(s)
Compuestos de Bencidrilo , Exposición Materna , Fenoles , Femenino , Animales , Ratones , Embarazo , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Glucosa/metabolismo , Placenta/metabolismo , Placenta/efectos de los fármacos , Feto/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal
6.
Environ Sci Technol ; 58(13): 5889-5898, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501580

RESUMEN

Human exposure to toxic chemicals presents a huge health burden. Key to understanding chemical toxicity is knowledge of the molecular target(s) of the chemicals. Because a comprehensive safety assessment for all chemicals is infeasible due to limited resources, a robust computational method for discovering targets of environmental exposures is a promising direction for public health research. In this study, we implemented a novel matrix completion algorithm named coupled matrix-matrix completion (CMMC) for predicting direct and indirect exposome-target interactions, which exploits the vast amount of accumulated data regarding chemical exposures and their molecular targets. Our approach achieved an AUC of 0.89 on a benchmark data set generated using data from the Comparative Toxicogenomics Database. Our case studies with bisphenol A and its analogues, PFAS, dioxins, PCBs, and VOCs show that CMMC can be used to accurately predict molecular targets of novel chemicals without any prior bioactivity knowledge. Our results demonstrate the feasibility and promise of computationally predicting environmental chemical-target interactions to efficiently prioritize chemicals in hazard identification and risk assessment.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Humanos , Exposición a Riesgos Ambientales/análisis , Bifenilos Policlorados/análisis , Medición de Riesgo , Salud Pública
7.
Mol Biol Rep ; 51(1): 271, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302795

RESUMEN

BACKGROUND: Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity. METHODS: Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. RESULTS: The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment. CONCLUSION: The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.


Asunto(s)
Bombesina , Interleucina-6 , Fenoles , Humanos , Bombesina/farmacología , Medios de Cultivo Condicionados/farmacología , Interleucina-6/genética , Interleucina-6/farmacología , Compuestos de Bencidrilo/toxicidad , Inflamación/inducido químicamente , Inflamación/genética , Hígado/metabolismo , Proliferación Celular , ARN Mensajero/genética , ARN Mensajero/metabolismo , ADN
8.
Environ Res ; 251(Pt 2): 118718, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490623

RESUMEN

Bisphenol A (BPA) degradation efficiency by bacteria or by metal-organic-frameworks (MOFs) catalyzed persulfate (PMS) oxidation have been studied intensively. However, their synergistic effect on BPA degradation was less reported. In this study, we combined previously synthesized CNT-hemin/Mn-MOF with an BPA degrading bacteria SQ-2 to form a composite (SQ-2@MOFs). CNT-hemin/Mn-MOF in the composite catalyzed little PMS to promote the degradation efficiency of SQ-2 on BPA. Results indicated SQ-2@MOFs significantly accelerated BPA degradation rate than SQ-2 alone. Furthermore, SQ-2@MOFs composite was successfully immobilized in hydrogel to achieve better degradation performance. Immobilized SQ-2@MOFs could almost completely degrade 1-20 mg/L BPA within 24 h and completely degrade 5 mg/L BPA at pH 4-8. Besides, degradation byproducts also reduced by immobilized SQ-2@MOFs, which promoted the cleaner biodegradation of BPA. Metabolomics and multiple chemical characterization results revealed the interconnection mechanism between CNT-hemin/Mn-MOFs, SQ-2 and hydrogel. CNT-hemin/Mn-MOF helped SQ-2 degrade BPA into more biodegradable products, promoted electron transfer, and augmented BPA degradation ability of SQ-2 itself. SQ-2 enabled the surface electronegativity of SQ-2@MOFs more suitable for BPA contact. Meanwhile, SQ-2 avoided the loss of Fe and Mn of CNT-hemin/Mn-MOF. Hydrogel augmented the above synergistic effect. This study provided new perspective for the development of biodegradation materials through interdisciplinary integration.


Asunto(s)
Compuestos de Bencidrilo , Biodegradación Ambiental , Hidrogeles , Estructuras Metalorgánicas , Fenoles , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/metabolismo , Fenoles/química , Fenoles/metabolismo , Hidrogeles/química , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Bacterias/metabolismo
9.
Environ Res ; 252(Pt 4): 119075, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719065

RESUMEN

BACKGROUND: Exposure to phenols, endocrine-disrupting chemicals used in personal care and consumer products, is widespread. Data on infant exposures are limited despite heightened sensitivity to endocrine disruption during this developmental period. We aimed to describe distributions and predictors of urinary phenol concentrations among U.S. infants ages 6-12 weeks. METHODS: The Infant Feeding and Early Development (IFED) study is a prospective cohort study of healthy term infants enrolled during 2010-2013 in the Philadelphia region. We measured concentrations of seven phenols in 352 urine samples collected during the 6- or 8- and/or 12-week study visits from 199 infants. We used linear mixed models to estimate associations of maternal, sociodemographic, infant, and sample characteristics with natural-log transformed, creatinine-standardized phenol concentrations and present results as mean percent change from the reference level. RESULTS: Median concentrations (µg/L) were 311 for methylparaben, 10.3 for propylparaben, 3.6 for benzophenone-3, 2.1 for triclosan, 1.0 for 2,5-dichlorophenol, 0.7 for BPA, and 0.3 for 2,4-dichlorophenol. Geometric mean methylparaben concentrations were approximately 10 times higher than published estimates for U.S. children ages 3-5 and 6-11 years, while propylparaben concentrations were 3-4 times higher. Infants of Black mothers had higher concentrations of BPA (83%), methylparaben (121%), propylparaben (218%), and 2,5-dichorophenol (287%) and lower concentrations of benzophenone-3 (-77%) and triclosan (-53%) than infants of White mothers. Triclosan concentrations were higher in breastfed infants (176%) and lower in infants whose mothers had a high school education or less (-62%). Phenol concentrations were generally higher in summer samples. CONCLUSIONS: Widespread exposure to select environmental phenols among this cohort of healthy U.S. infants, including much higher paraben concentrations compared to those reported for U.S. children, supports the importance of expanding population-based biomonitoring programs to infants and toddlers. Future investigation of exposure sources is warranted to identify opportunities to minimize exposures during these sensitive periods of development.


Asunto(s)
Exposición a Riesgos Ambientales , Fenoles , Humanos , Lactante , Femenino , Fenoles/orina , Masculino , Exposición a Riesgos Ambientales/análisis , Estudios Prospectivos , Contaminantes Ambientales/orina , Disruptores Endocrinos/orina , Disruptores Endocrinos/análisis , Adulto
10.
Environ Res ; 249: 118433, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331151

RESUMEN

BACKGROUND: Experimental studies have suggested exposure to bisphenol A (BPA) and its alternatives, such as bisphenol F (BPF) and bisphenol S (BPS), may exert adverse effects on ovarian reserve, but human evidence is limited. Moreover, the potential predictors of exposure to bisphenols among women seeking infertility treatment have not been reported. OBJECTIVE: To explore whether individual or mixture of BPA, BPF, and BPS were related to antral follicle count (AFC), and further identify the predictors of exposure to bisphenols among women seeking assisted reproductive treatment. METHODS: A total of 111 women from a reproductive center in Shenyang, China were enrolled in this study from September 2020 to February 2021. The concentrations of urinary BPA, BPF, and BPS were measured using ultra-high-performance liquid chromatography-triple quadruple mass spectrometry (UHPLC-MS/MS). AFC was measured by two infertility physicians through transvaginal ultrasonography on the 2-5 days of a natural cycle. Demographic characteristics, dietary habits, and lifestyles were obtained by questionnaires. The associations between individual and mixture of urinary bisphenols concentrations (BPA, BPF, and BPS) and AFC were assessed by the Poisson regression models and the quantile-based g-computation (QGC) model, respectively. The potential predictors of exposure to bisphenols were identified by the multivariate linear regression models. RESULTS: After adjusting for confounders, elevated urinary concentrations of BPA, BPF and BPS were associated with reduced AFC (ß = -0.016; 95%CI: -0.025, -0.006 in BPA; ß = -0.017; 95%CI: -0.029, -0.004 in BPF; ß = -0.128; 95%CI: -0.197, -0.060 in BPS). A quantile increase in the bisphenols mixture was negatively associated with AFC (ß = -0.101; 95%CI: -0.173, -0.030). Intake of fried food had higher urinary concentrations of BPF, BPS, and total bisphenols (∑BPs) than women who did not eat, and age was related to increased urinary BPF concentrations. CONCLUSION: Our findings indicated that exposure to individual BPA, BPF, BPS and bisphenol mixtures were associated with impaired ovarian reserve. Furthermore, the intake of fried food, as identified in this study, could serve as an important bisphenols exposure route for reproductive-aged women.


Asunto(s)
Compuestos de Bencidrilo , Folículo Ovárico , Fenoles , Sulfonas , Adulto , Femenino , Humanos , Compuestos de Bencidrilo/orina , China , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/orina , Clínicas de Fertilidad , Folículo Ovárico/efectos de los fármacos , Fenoles/orina , Sulfonas/orina , Estudios Transversales
11.
Environ Res ; 252(Pt 2): 118966, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640992

RESUMEN

OBJECTIVE: To evaluate the association between exposure to plastic-related endocrine-disrupting chemicals (EDCs), specifically Bisphenol A (BPA), Phthalates, Cadmium, and Lead, and the risk of estrogen-dependent diseases (EDDs) such as polycystic ovary syndrome (PCOS), endometriosis, or endometrial cancer by conducting a meta-analysis of relevant studies. METHODS: PubMed, Web of Science, and Cochrane Library databases were used for literature retrieval of articles published until the 21st of April 2023. Literature that evaluated the association between BPA, phthalates, cadmium, and/or lead exposure and the risk of PCOS, endometriosis, or endometrial cancer development or exacerbation were included in our analysis. STATA/MP 17.0 was used for all statistical analyses. RESULTS: Overall, 22 articles were included in our meta-analysis with a total of 83,641 subjects all of whom were females aged between 18 and 83 years old. The overall effect size of each study was as follows: endometriosis risk in relation to BPA exposure ES 1.82 (95% CI; 1.50, 2.20). BPA and PCOS risk ES 1.61 (95% CI; 1.39, 1.85). Phthalate metabolites and endometriosis risk; MBP ES 1.07 (95% CI; 0.86, 1.33), MEP ES 1.05 (95% CI; 0.87, 1.28), MEHP ES 1.15 (95% CI; 0.67, 1.98), MBzP ES 0.97 (95% CI; 0.63, 1.49), MEOHP ES 1.87 (95% CI; 1.21, 2.87), and MEHHP ES 1.98 (95% CI; 1.32, 2.98). Cadmium exposure and endometrial cancer risk ES 1.14 (95% CI; 0.92, 1.41). Cadmium exposure and the risk of endometriosis ES 2.54 (95% CI; 1.71, 3.77). Lead exposure and the risk of endometriosis ES 1.74 (95% CI; 1.13, 2.69). CONCLUSION: Increased serum, urinary, or dietary concentration of MBzP and MEHP in women is significantly associated with endometriosis risk. Increased cadmium concentration is associated with endometrial cancer risk.


Asunto(s)
Disruptores Endocrinos , Neoplasias Endometriales , Endometriosis , Humanos , Femenino , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/efectos adversos , Endometriosis/inducido químicamente , Endometriosis/epidemiología , Neoplasias Endometriales/inducido químicamente , Neoplasias Endometriales/epidemiología , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/epidemiología , Adulto , Fenoles/toxicidad , Fenoles/efectos adversos , Adulto Joven , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/efectos adversos , Plásticos , Ácidos Ftálicos/orina , Ácidos Ftálicos/toxicidad , Persona de Mediana Edad , Cadmio/toxicidad , Cadmio/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Adolescente , Contaminantes Ambientales , Estrógenos , Anciano , Plomo/sangre , Plomo/toxicidad , Anciano de 80 o más Años
12.
Environ Res ; 251(Pt 2): 118752, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513750

RESUMEN

Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17ß-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.


Asunto(s)
Compuestos de Bencidrilo , Disruptores Endocrinos , Fenoles , Vía de Señalización Wnt , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Humanos , Disruptores Endocrinos/toxicidad , Vía de Señalización Wnt/efectos de los fármacos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Estrés Oxidativo/efectos de los fármacos
13.
Environ Res ; 249: 118427, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325780

RESUMEN

Porous organic polymers (POPs) present superior adsorption performance to steroid endocrine disruptors. However, the effective recovery and high cost have been a big limitation for their large-scale applications. Herein, magnetic azo-linked porous polymers (Fe3O4@SiO2/ALP-p) were designed and prepared in a green synthesis approach using low-price materials from phloroglucinol and pararosaniline via a diazo-coupling reaction under standard temperature and pressure conditions, which embedded with Fe3O4@SiO2 nanoparticles to form three-dimensional interlayer network structure with flexible-rigid interweaving. The saturated adsorption capacity to bisphenol-A (BPA) was 485.09 mg/g at 298 K, which increased by 1.4 times compared with ALP-p of relatively smaller mass density. This enhanced adsorption was ascribed to increment from surface adsorption and pore filling with 2.3 times of specific surface area and 2.6 times of pore volume, although the total organic functional groups decreased with Fe3O4@SiO2 amendment. Also, the adsorption rate increased by about 1.1 and 1.5-fold due to enhancement in the initial stage of surface adsorption and subsequent stage pore diffusion, respectively. Moreover, this adsorbent could be used in broad pH (3.0-7.0) and salinity adaptability (<0.5 mol/L). The loss of adsorption capacity and magnetic recovery were lower than 1.1% and 0.8% in each operation cycle because of the flexible-rigid interweave. This excellent performance was contributed by synergistic effects from physisorption and chemisorption, such as pore filling, electrostatic attraction, π-π stacking, hydrogen bonding, and hydrophobic interaction. This study offered a cost-effective, high-performing, and ecologically friendly material along with a green preparation method.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Polímeros , Contaminantes Químicos del Agua , Adsorción , Fenoles/química , Contaminantes Químicos del Agua/química , Porosidad , Polímeros/química , Compuestos de Bencidrilo/química , Tecnología Química Verde/métodos , Compuestos Azo/química , Reciclaje/métodos , Purificación del Agua/métodos
14.
Arch Toxicol ; 98(1): 1-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855918

RESUMEN

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.


Asunto(s)
Trastorno del Espectro Autista , Disruptores Endocrinos , Niño , Humanos , Trastorno del Espectro Autista/inducido químicamente , Sistema Nervioso , Fenoles/toxicidad , Fenoles/química , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química
15.
Regul Toxicol Pharmacol ; 146: 105526, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995898

RESUMEN

Thermal printing technology requires a color developer to activate the dye under the action of heat. Bisphenol A (BPA) has traditionally been used for this purpose, although it has increasingly been replaced by bisphenol S (BPS) in recent years. Due to concerns regarding their toxicity, the Swiss authorities have banned both BPA and BPS from thermal papers since 2020. The impact of this regulatory decision was evaluated during 3 monitoring campaigns: in 2013-2014, 2019 and 2021. They were used to describe the starting point, the transition phase, and the status after entry into force of the ban, respectively. Whereas the use of BPA as color developer dropped from 82.2% in 2013/14 to 10.8% in 2021, the fraction of BPS-based thermal paper rose from 3.1% to 19.1% during the same period, despite being banned. However, Pergafast® 201 (PF201) is now the main color developer in thermal paper in Switzerland, with an occurrence of 60.3%. Other alternatives such as D-8, TGSA, PPSMU, NKK-1304, BPS-MAE, D-90 and Blue4est® have only been marginally detected. This study demonstrates the efficiency of the regulatory measure and the feasibility to substitute BPA in thermal papers with less-toxic alternatives.


Asunto(s)
Papel , Fenoles , Suiza , Fenoles/toxicidad , Fenoles/análisis , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/análisis
16.
J Appl Toxicol ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129338

RESUMEN

Owning to the increasing body of evidence about the ubiquitous exposure to endocrine disruptors (EDCs), particularly bisphenol A (BPA), and associated health effects, BPA has been gradually substituted with insufficiently tested structural analogs. The unmanaged excessive use of antimicrobial agents such as triclosan (TCS) during the COVID-19 outbreak has also raised concerns about its possible interferences with hormonal functions. The similarity of BPA and estradiol, as well as TCS and non-steroidal estrogens, imply that endocrine-disrupting properties of their analogs could be predicted based on the chemical structure. Hence, this study aimed to evaluate the endocrine-disrupting potential of BPA substitutes as well as TCS derivatives and degradation/biotransformation metabolites, in comparison to BPA and TCS based on their molecular properties, computational predictions of pharmacokinetics and binding affinities to nuclear receptors. Based on the obtained results several under-researched BPA analogs exhibited higher binding affinities for nuclear receptors than BPA. Notable analogs included compounds detected in receipts (DD-70, BTUM-70, TGSA, and BisOPP-A), along with a flame retardant, BDP. The possible health hazards linked to exposure to TCS and its mono-hydroxylated metabolites were also found. Further research is needed in order to elucidate the health impacts of these compounds and promote better regulation practices.

17.
BMC Health Serv Res ; 24(1): 204, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355492

RESUMEN

BACKGROUND: We identified that Stanford Health Care had a significant number of patients who after discharge are found by the utilization review committee not to meet Center for Mediare and Medicaid Services (CMS) 2-midnight benchmark for inpatient status. Some of the charges incurred during the care of these patients are written-off and known as Medicare 1-day write-offs. This study which aims to evaluate the use of a Best Practice Alert (BPA) feature on the electronic medical record, EPIC, to ensure appropriate designation of a patient's hospitalization status as either inpatient or outpatient in accordance with Center for Medicare and Medicaid services (CMS) 2 midnight length of stay benchmark thereby reducing the number of associated write-offs. METHOD: We incorporated a best practice alert (BPA) into the Epic Electronic Medical Record (EMR) that would prompt the discharging provider and the case manager to review the patients' inpatient designation prior to discharge and change the patient's designation to observation when deemed appropriate. Patients who met the inclusion criteria (Patients must have Medicare fee-for-service insurance, inpatient length of stay (LOS) less than 2 midnights, inpatient designation as hospitalization status at time of discharge, was hospitalized to an acute level of care and belonged to one of 37 listed hospital services at the time of signing of the discharge order) were randomized to have the BPA either silent or active over a three-month period from July 18, 2019, to October 18, 2019. RESULT: A total of 88 patients were included in this study: 40 in the control arm and 48 in the intervention arm. In the intervention arm, 8 (8/48, 16.7%) had an inpatient status designation despite potentially meeting Medicare guidelines for an observation stay, comparing to 23 patients (23/40, 57.5%) patients in the control group (p = 0.001). The estimated number of write-offs in the control arm was 17 (73.9%, out of 23 inpatient patients) while in the intervention arm was 1 (12.5%, out of 8 inpatient patient) after accounting for patients who may have met inpatient criteria for other reasons based on case manager note review. CONCLUSION: This is the first time to our knowledge that a BPA has been used in this manner to reduce the number of Medicare 1-day write-offs.


Asunto(s)
Medicare , Mejoramiento de la Calidad , Anciano , Humanos , Estados Unidos , Hospitalización , Tiempo de Internación , Alta del Paciente
18.
Ecotoxicol Environ Saf ; 276: 116312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608383

RESUMEN

The use of bisphenol A (BPA) has been restricted due to its endocrine-disrupting effects. As a widely used alternative to BPA today, environmental levels of bisphenol Z (BPZ) continue to rise and accumulate in humans. Oocyte quality is critical for a successful pregnancy. Nevertheless, the toxic impacts of BPZ on the maturation of mammalian oocytes remain unexplored. Therefore, the impacts of BPZ and BPA on oocyte meiotic maturation were compared in an in vitro mouse oocyte culture model. Exposure to 150 µM of both BPZ and BPA disrupted the assembly of the meiotic spindle and the alignment of chromosomes, and BPZ exerted stronger toxicological effects than BPA. Furthermore, BPZ resulted in aberrant expression of F-actin, preventing the formation of the actin cap. Mechanistically, BPZ exposure disrupted the mitochondrial localization pattern, reduced mitochondrial membrane potential and ATP content, leading to impaired mitochondrial function. Further studies revealed that BPZ exposure resulted in oxidative stress and altered expression of genes associated with anti-oxidative stress. Moreover, BPZ induced severe DNA damage and triggered early apoptosis in oocytes, accompanied by impaired lysosomal function. Overall, the data in this study suggest that BPZ is not a safe alternative to BPA. BPZ can trigger early apoptosis by affecting mitochondrial function and causing oxidative stress and DNA damage in oocytes. These processes disrupt cytoskeletal assembly, arrest the cell cycle, and ultimately inhibit oocyte meiotic maturation.


Asunto(s)
Compuestos de Bencidrilo , Daño del ADN , Disruptores Endocrinos , Meiosis , Mitocondrias , Oocitos , Estrés Oxidativo , Fenoles , Animales , Fenoles/toxicidad , Oocitos/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Meiosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Femenino , Disruptores Endocrinos/toxicidad , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Actinas/metabolismo
19.
Ecotoxicol Environ Saf ; 269: 115750, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043415

RESUMEN

Bisphenol A (BPA) is easily enriched in many human-disturbed watersheds, particularly lakes with poor water mobility, which is posing a threat to aquatic biota. While previous studies have focused on the concentration of BPA in water and its toxicity to aquatic organisms, a small amount of measured data is not enough to reveal the temporal and spatial distribution and threats of BPA, and estimate the ecological risk in watersheds. Therefore, we collected 164 measured BPA data points from Taihu Lake to develop machine learning models using random forest (RF), support vector machine (SVM) and least square regression (LSR) and created month-by-month watershed prediction maps in temperate lakes to estimate the spatiotemporal distribution and threats of BPA. Due to RF's superior robustness to noisy data, the RF model exhibits the best performance among the three algorithms. The RF model showed acceptable predictive performance on the modeling dataset (coefficients of determination and root-mean-square error for the training set were 0.927 and 17.499, respectively, and 0.607, 39.645 for the validation set, respectively). The maps indicated that areas susceptible to anthropogenic activities were more severely polluted by BPA, and rainy climate may favor the migration of BPA to aquatic ecosystems. The model was also applied to predict 42 data points of BPA collected from Dianchi Lake, and the results showed that most predicted data were within a factor of 10 of the measured data, but the prediction accuracy of the model has declined. The ecological risks in the two lakes were evaluated and attention should be paid to the regions with higher risks. Our study provided a novel idea for comprehensive monitoring of an unconventional trace pollutant with endocrine disrupting effects in aquatic ecosystems and analyzing their spatiotemporal distribution, which will contribute to the scientific assessment of the ecological risk of BPA.


Asunto(s)
Compuestos de Bencidrilo , Ecosistema , Fenoles , Contaminantes Químicos del Agua , Lagos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua , China
20.
Ecotoxicol Environ Saf ; 278: 116412, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691879

RESUMEN

BACKGROUND: Bisphenol A (BPA) is an industrial chemical that is commonly found in daily consumer products. BPA is reportedly associated with lung diseases. However, the impact of BPA on pulmonary fibrosis (PF) and its possible mechanisms of action both remain unclear. METHODS: A PF mouse model was induced by bleomycin (BLM). Mouse lung fibroblasts (MLG 2908) and mouse alveolar epithelial cells (MLE-12) were treated with BPA to establish a PF cell model. Tissue staining, CCK-8 assays, western blot experiments and relevant indicator kits were used to detect and evaluate the effect of BPA on PF. RESULTS: BPA dose-dependently promoted oxidative stress and induced ferroptosis, leading to PF. The ferroptosis inhibitor Fer-1 partly attenuated the effect of BPA. In addition, among the two main cell types associated with the progression of PF, MLE-12 cells are more sensitive to BPA than are MLG 2908 cells, and BPA induces ferroptosis in MLE-12 cells. Furthermore, BPA promoted autophagy-mediated ferroptosis by activating the AMPK/mTOR signaling pathway, thereby exacerbating the progression of PF. The autophagy inhibitor CQ1 partly attenuated the effect of BPA. CONCLUSION: BPA promotes the progression of PF by promoting autophagy-dependent ferroptosis in alveolar epithelial cells, which provides a new theoretical basis for understanding BPA-induced PF.


Asunto(s)
Células Epiteliales Alveolares , Autofagia , Compuestos de Bencidrilo , Ferroptosis , Fenoles , Fibrosis Pulmonar , Animales , Ferroptosis/efectos de los fármacos , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Ratones , Autofagia/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Bleomicina/toxicidad , Línea Celular , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA