Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
Más filtros

Intervalo de año de publicación
1.
Med Res Rev ; 44(1): 23-65, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37246889

RESUMEN

Cytokines are compounds that belong to a special class of signaling biomolecules that are responsible for several functions in the human body, being involved in cell growth, inflammatory, and neoplastic processes. Thus, they represent valuable biomarkers for diagnosing and drug therapy monitoring certain medical conditions. Because cytokines are secreted in the human body, they can be detected in both conventional samples, such as blood or urine, but also in samples less used in medical practice such as sweat or saliva. As the importance of cytokines was identified, various analytical methods for their determination in biological fluids were reported. The gold standard in cytokine detection is considered the enzyme-linked immunosorbent assay method and the most recent ones have been considered and compared in this study. It is known that the conventional methods are accompanied by a few disadvantages that new methods of analysis, especially electrochemical sensors, are trying to overcome. Electrochemical sensors proved to be suited for the elaboration of integrated, portable, and wearable sensing devices, which could also facilitate cytokines determination in medical practice.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Sudor/química , Saliva/química , Técnicas Biosensibles/métodos
2.
Anal Biochem ; 694: 115624, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39029643

RESUMEN

Nitro fatty acids (NO2-FAs) are biologically active compounds produced from the reaction of unsaturated fatty acids with reactive nitrogen species (RNS). Due to their electrophilic nature, these endogenously produced metabolites can react with nucleophilic targets, producing a spectrum of modulatory and protective effects. Determination of NO2-FAs in biological samples is challenging due to their low nanomolar to picomolar endogenous concentrations, indistinct metabolism, and distribution in many tissues and biofluids. Several attempts have been made to develop precise, standardized, and efficient methodologies for assessing physiological and pathophysiological processes to overcome the difficulties associated with their measurement. This review discusses those approaches utilizing liquid chromatography tandem mass spectrometry (LC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS) for the quantification of NO2-FAs, in addition to a summary of their laboratory synthesis and extraction from biological samples. Clinical associations with different pathological conditions, including hyperlipidaemia, cardiac ischemia and herpes simplex type 2 viral infection (HSV-2), are also discussed.


Asunto(s)
Ácidos Grasos , Espectrometría de Masas en Tándem , Humanos , Ácidos Grasos/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Animales , Nitrocompuestos/análisis , Nitrocompuestos/química
3.
Methods ; 210: 20-35, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634727

RESUMEN

Oxidases and peroxidases are two subclasses of oxidoreductases. The abnormal expression of oxidases (such as tyrosinase, cytochrome P450 oxidases, and monoamine oxidases) and peroxidases (such as glutathione peroxidase, myeloperoxidase, and eosinophil peroxidase) is relative with some diseases. Therefore, the analysis of oxidases and peroxidases is great important for disease diagnosis and treatment. Fluorescent probes present simple protocol, high sensitivity and good stability in sensing field. Molecule fluorescent probes are constructed with chemical groups that tunes their fluorescence emission in response to binding events, chemical reactions, and the surrounding environment. A fluorescent probe is an efficient tool for visualizing the activity of enzymes in living organisms on the basis of its high specificity, sensitivity, and noninvasiveness characteristics. In this review, we focus on the sensing of oxidases and peroxidases by molecule fluorescent probes, and hope to bring new insight to wide researchers about oxidases and peroxidases in biological samples.


Asunto(s)
Oxidorreductasas , Peroxidasas , Peroxidasas/genética , Peroxidasas/metabolismo , Colorantes Fluorescentes/química , Sondas Moleculares , Diagnóstico por Imagen
4.
Anal Bioanal Chem ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164506

RESUMEN

Sample preparation in an analytical sequence increases the number of errors, is highly time-consuming, and involves the manipulation of hazardous reagents. Therefore, when an improvement in an analytical method is required, the sample preparation step needs to be optimised or redesigned. Moreover, this step can involve significant toxic reagents and a high volume of waste. In that regard, this study proposes a new procedure based on microwave-assisted wet digestion combining two green strategies: a miniaturised system (with a few microlitres of volume) and the only use of hydrogen peroxide. Three biological samples (human serum, urine, and plant in vitro material) were chosen due to their high potential for disease monitoring, toxicological studies, and biotechnology applications. Several trace elements (Ca, Cd, Co, Cu, Fe, Mg, Mn, Mo, Ni, Se, and Zn) were determined by inductively coupled plasma optical emission spectroscopy and inductively coupled plasma mass spectrometry. For human serum and urine, a certified reference material was used to check for accuracy; the recovery ranged from 72% (Cd, ICP-MS) to 105% (Mg, ICP OES) for serum, while for urine, they varied from 82% (Ni, ICP-MS) to 122% (Zn, ICP-MS). For the soybean callus sample (in vitro plant material), a comparison between the proposed method and the acid digestion method was conducted to evaluate the accuracy, and the results agreed. The detection limits were 0.001-60 µg L-1 (lowest for Cd), thus demonstrating a suitable sensitivity. Moreover, the decomposition efficiency was demonstrated by determining the residual carbon, and a low amount was found in the final product digested (below 0.8% w v-1). A green metric approach was calculated for the proposed method, and according to AGREEprep software, it was found to be around 0.4. Finally, the method was applied to urine samples collected in patients with COVID-19 and soybean callus cultivated with silver nanoparticles. This sample preparation method is a new acidless and miniaturised alternative for elemental analysis involving biological samples.

5.
Anal Bioanal Chem ; 416(18): 4153-4171, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797772

RESUMEN

This paper introduces an enhanced technique for analyzing iron isotopes in complex marine and biological samples. A dedicated iron purification method for biological marine matrices, utilizing three ion exchange columns, is validated. The MC-ICPMS in pseudo-high-resolution mode determines precise iron isotopic ratios, with sensitivity improved through the DSN-100 desolvating nebulizer system and Apex-IR. Only 2 µg of iron on DSN versus 1 µg on Apex is needed for six replicates (30-60 times improvement) while 10 to 20 µg is required for a single measurement on a wet system considering the resolution power (Rp) is maintained at 11,000-13,000. The Ni-doping method with a Fe/Ni ratio of 1 yields more accurate isotopic ratios than standard-sample bracketing alone. Measurement reproducibility of triplicate samples from marine biological experiments on MC-ICPMS is ± 0.03‰ (2SD) for δ56Fe and ± 0.07‰ for δ57Fe (2SD). This study introduces a novel iron purification process specifically designed for marine and biological samples, enhancing sensitivity and enabling more reliable measurements with smaller sample sizes and reduced uncertainties. It proposes iron isotopic compositions for biological reference materials, offering a valuable reference dataset in diverse scientific disciplines.


Asunto(s)
Isótopos de Hierro , Espectrometría de Masas , Isótopos de Hierro/análisis , Espectrometría de Masas/métodos , Animales , Reproducibilidad de los Resultados , Agua de Mar/química , Hierro/análisis
6.
Anal Bioanal Chem ; 416(24): 5233-5253, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39158631

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) has emerged as a powerful analytical technique for analyzing complex biological samples. Among various chromatographic stationary phases, porous graphitic carbon (PGC) columns have attracted significant attention due to their unique properties-such as the ability to separate both polar and non-polar compounds and their stability through all pH ranges and to high temperatures-besides the compatibility with LC-MS. This review discusses the applicability of PGC for SPE and separation in LC-MS-based analyses of human biological samples, highlighting the diverse applications of PGC-LC-MS in analyzing endogenous metabolites, pharmaceuticals, and biomarkers, such as glycans, proteins, oligosaccharides, sugar phosphates, and nucleotides. Additionally, the fundamental principles underlying PGC column chemistry and its advantages, challenges, and advances in method development are explored. This comprehensive review aims to provide researchers and practitioners with a valuable resource for understanding the capabilities and limitations of PGC columns in LC-MS-based analysis of human biological samples, thereby facilitating advancements in analytical methodologies and biomedical research.


Asunto(s)
Grafito , Espectrometría de Masas , Humanos , Grafito/química , Cromatografía Liquida/métodos , Porosidad , Espectrometría de Masas/métodos , Extracción en Fase Sólida/métodos , Biomarcadores/análisis , Proteínas/análisis , Polisacáridos/análisis , Cromatografía Líquida con Espectrometría de Masas
7.
Anal Bioanal Chem ; 416(18): 4057-4070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38842689

RESUMEN

A novel ferrofluid prepared from a hydrophobic deep eutectic solvent (DES) and Fe3O4@graphite composite materials was introduced as a green microextraction medium for the separation and enrichment of trace estrogens in real samples. It was found that the ferrofluid greatly improved the capacity and selectivity of target analytes, benefiting from the enrichment of both DES and Fe3O4@graphite composite materials. Using a combination of high-performance liquid chromatography-fluorescence detection (HPLC-FLD) and vortex-assisted liquid-liquid microextraction (VALLME), a new method was established for simultaneous rapid processing and accurate determination of three estrogens (estradiol [E2], estriol [E3], and ethinyl estradiol [EE2]) in environmental water and urine samples. Key parameters affecting the extraction efficiency were optimized using a single-factor approach and response surface methodology. Under optimal conditions, this method yielded a low limit of detection (1.01 ng L-1, 3.03 ng L-1, and 25.0 ng L-1 for EE2, E2, and E3, respectively), wide linear range (3-200,000 ng L-1), high enrichment factors (9.81-47.2), and satisfactory recovery (73.8-129.0%). Compared with traditional analytical techniques, this method avoids the use of volatile toxic organic extraction solvents and cumbersome phase separation operations.


Asunto(s)
Estrógenos , Interacciones Hidrofóbicas e Hidrofílicas , Límite de Detección , Microextracción en Fase Líquida , Contaminantes Químicos del Agua , Estrógenos/orina , Estrógenos/análisis , Contaminantes Químicos del Agua/orina , Contaminantes Químicos del Agua/análisis , Microextracción en Fase Líquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Disolventes Eutécticos Profundos/química , Humanos
8.
J Sep Sci ; 47(3): e2300745, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356226

RESUMEN

Understanding and comparing the applicability of electromembrane extraction (EME) and liquid-phase microextraction (LPME) is crucial for selecting an appropriate microextraction approach. In this work, EME and LPME based on supported liquid membranes were compared using biological samples, including whole blood, urine, saliva, and liver tissue. After optimization, efficient EME and LPME of clozapine from four biological samples were achieved. EME provided higher recovery and faster mass transfer for blood and liver tissue than LPME. These advantages were attributed to the electric field disrupting clozapine binding to interfering substances. For urine and saliva, EME demonstrated similar recoveries while achieving faster mass transfer rates. Finally, efficient EME and LPME were validated and evaluated combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The coefficient of determination of all methods was greater than 0.999, and all methods showed acceptable reproducibility (≤14%), accuracy (90%-110%), and matrix effect (85%-112%). For liver and blood with high viscosity and complex matrices, EME-LC-MS/MS provided better sensitivity than LPME-LC-MS/MS. The above results indicated that both EME and LPME could be used to isolate non-polar basic drugs from different biological samples, although EME demonstrated higher recovery rates for liver tissue and blood.


Asunto(s)
Clozapina , Microextracción en Fase Líquida , Cromatografía Liquida , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Microextracción en Fase Líquida/métodos , Membranas Artificiales
9.
Biomed Chromatogr ; 38(1): e5758, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37795814

RESUMEN

This study aimed to develop a fast, accurate, and precise high-performance liquid chromatography with UV detection method for simultaneous analysis of underivatized phenylalanine (Phe) and tyrosine (Tyr) in biological samples. Separation of the analytes was accomplished using a Discovery HS F5-3 column, which offered better retention and peak symmetry for the tested analytes. Chromatographic conditions were optimized using central composite experimental design, and three factors were investigated: the concentration of ammonium acetate (A), the acetonitrile proportion in the mobile phase (B) and the column oven temperature (C). The approach was verified using ß-expectation tolerance intervals for total error measurement that did not exceed 15%. Optimal settings were A = 50 mm, B = 24% and C = 28°C. The method applicability was determined using human plasma from 75 volunteers. The limits of detection and quantification of the technique were satisfactory at 9 and 29 µm for Phe and 4 and 13 µm for Tyr. The mean analytical bias in spiking levels was acceptable, ranging from -1.649 to +1.659% for both substances, with RSD <5% in all instances. The suggested approach was successfully used to analyze Phe and Tyr in human blood samples and calculate the Phe/Tyr ratio.


Asunto(s)
Fenilcetonurias , Tirosina , Humanos , Fenilalanina , Cromatografía Líquida de Alta Presión/métodos , Fenilcetonurias/diagnóstico , Temperatura
10.
Luminescence ; 39(9): e4877, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39192819

RESUMEN

Rifampicin is a frontline antibiotic in the management of tuberculosis. Since no spectrofluorimetric methods are reported for this drug, this approach was challenged to craft a sensitive, reliable, valid, fast, and green methodology. In recent years, fluorescence spectroscopy has received a lot of interest. Its benefits include ecological greenness and analytical performance. The pharmaceutical industries greatly like this approach because of its low energy and decreased solvent usage, which make it both economical and environmentally friendly. This methodology was based on utilizing the enhanced native fluorescence of the rifampicin at 341 nm after excitation at 241 nm in a beta-cyclodextrin micellar system. Modern developments in analytical chemistry have been applied to reduce risks to the workplace and environment by using distilled water as a dilution solvent for method application and optimization. The method was found excellent green with 97 eco-scale and 0.86 AGREE scores besides an 89.6 overall whiteness score. The range of linearity for rifampicin raw material was 0.2-1.5 µg·mL-1, and the average recoveries for raw material and spiked plasma were 100.15% and 99.64%, respectively. The suggested technique worked well for the commercial oral syrup of Rimactane® and did not conflict with any common additives.


Asunto(s)
Micelas , Rifampin , Espectrometría de Fluorescencia , Agua , Rifampin/análisis , Rifampin/sangre , Rifampin/química , Agua/química , beta-Ciclodextrinas/química , Antituberculosos/análisis , Antituberculosos/química , Antibióticos Antituberculosos/análisis , Antibióticos Antituberculosos/sangre , Antibióticos Antituberculosos/química
11.
Magn Reson Chem ; 62(6): 463-473, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38282484

RESUMEN

Benchtop NMR provides improved accessibility in terms of cost, space, and technical expertise. In turn, this encourages new users into the field of NMR spectroscopy. Unfortunately, many interesting samples in education and research, from beer to whole blood, contain significant amounts of water that require suppression in 1H NMR in order to recover sample information. However, due to the significant reduction in chemical shift dispersion in benchtop NMR systems, the sample signals are much closer to the water resonance compared to those in a corresponding high-field NMR spectrum. Therefore, simply translating solvent suppression experiments intended for high-field NMR instruments to benchtop NMR systems without careful consideration can be problematic. In this study, the effectiveness of several popular water suppression schemes was evaluated for benchtop NMR applications. Emphasis is placed on pulse sequences with no, or few, adjustable parameters making them easy to implement. These fall into two main categories: (1) those based on Pre-SAT including Pre-SAT, PURGE, NOESY-PR, and g-NOESY-PR and (2) those based on binomial inversion including JRS and W5-WATERGATE. Among these schemes, solvent suppression sequences based on Pre-SAT offer a general approach for easy solvent suppression for samples with higher analyte concentrations (sucrose standard and Redbull™). However, for human urine, binomial-like sequences were required. In summary, it is demonstrated that highly efficient water suppression approaches can be implemented on benchtop NMR systems in a simple manner, despite the limited spectral dispersion, further illustrating the potential for widespread implementation of these approaches in education and research.

12.
Mikrochim Acta ; 191(9): 527, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120802

RESUMEN

A sophisticated electrochemical sensor is presented employing a glassy carbon electrode (GCE) modified with a novel composite of synthesized graphitic carbon nitride (g-C3N4) and CoNiO2 bimetallic oxide nanoparticles (g-C3N4/CoNiO2). The sensor's electrocatalytic capabilities for Sunitinib (SUNI) oxidation were demonstrated exceptional performance with a calculated detection limit (LOD) of 52.0 nM. The successful synthesis and integrity of the composite were confirmed through meticulous characterization using various techniques. FT-IR analysis affirmed the successful synthesis of g-C3N4/CoNiO2 by providing insights into its molecular structure. XRD, FE-SEM, SEM-EDX, and BET analyses collectively validated the material's structural integrity, surface morphology, and electrocatalytic performance. Optimization of key analytical parameters, such as loading volume, concentration, electrolyte solution type, and pH, enhanced the electrocatalytic sensing capabilities of g-C3N4/CoNiO2. The synergistic interaction between g-C3N4 and CoNiO2 bimetallic oxide nanoparticles executed the sensor highly effective in the electrical oxidation of SUNI. Across a concentration range of 0.1-83.8 µM SUNI, the anodic peak current exhibited a linear increase with good precision. Application of the newly developed g-C3N4/CoNiO2 system to detect SUNI in a variety of samples, including urine, human serum, and capsule dosage forms, obtained satisfactory recoveries ranging from 97.1 to 103.0%. This methodology offers a novel approach to underscore the potential of the developed sensor for applications in biological and pharmaceutical monitoring.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Grafito , Límite de Detección , Compuestos de Nitrógeno , Sunitinib , Grafito/química , Humanos , Sunitinib/química , Sunitinib/análisis , Sunitinib/sangre , Sunitinib/orina , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Compuestos de Nitrógeno/química , Nanopartículas del Metal/química , Carbono/química , Óxidos/química , Oxidación-Reducción , Nitrilos/química
13.
Mikrochim Acta ; 191(3): 164, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413405

RESUMEN

A reliable, rapid, and inexpensive nano-sized chemosensor is presented for methamidophos (MET) - an insecticide. Poly(lactic acid) (PLA)-stabilized gold nanoparticles (AuNPs) were synthesized by a simple one-pot, two-phase chemical reduction method. The synthesized PLA-AuNPs were subsequently employed for selective, efficient, and quantitative detection of MET. MET is one of the highly toxic pesticides used for eradication of agricultural and urban insects. Upon the addition of MET, the wine-red color of PLA-AuNPs swiftly transformed into greyish-blue, further corroborated by a significant bathochromic and hyperchromic shift in the SPR band. The presence of other interfering insecticides, metal salts, and drugs did not have any pronounced effect on quantitative MET detection. The detection limit, the quantification limit, and linear dynamic range of MET utilizing PLA-AuNPs were  0.0027 µM, 0.005 µM, and 0.005-1000 µM, respectively. The PLA-AuNP-based assay renders an efficient, rapid, accurate, and selective quantification of MET in food, biological, and environmental samples. The proposed sensor provides an appropriate platform for fast and on-the-spot determination of MET without requiring a well-equipped lab setup.


Asunto(s)
Insecticidas , Nanopartículas del Metal , Compuestos Organotiofosforados , Oro , Insecticidas/análisis , Colorimetría/métodos , Poliésteres
14.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542431

RESUMEN

One-carbon folate metabolites and one-carbon-related amino acids play an important role in human physiology, and their detection in biological samples is essential. However, poor stability as well as low concentrations and occurrence in different species in various biological samples make their quantification very challenging. The aim of this study was to develop a simple, fast, and sensitive ultra-high-performance liquid chromatography MS/MS (UHPLC-MS/MS) method for the simultaneous quantification of various one-carbon folate metabolites (folic acid (FA), tetrahydrofolic acid (THF), p-aminobenzoyl-L-glutamic acid (pABG), 5-formyltetrahydrofolic acid (5-CHOTHF), 5-methyltetrahydrofolic acid (5-CH3THF), 10-formylfolic acid (10-CHOFA), 5,10-methenyl-5,6,7,8-tetrahydrofolic acid (5,10-CH+-THF), and 4-α-hydroxy-5-methyltetrahydrofolate (hmTHF)) and one-carbon-related amino acids (homocysteine (Hcy), methionine (Met), S-ade-L-homocysteine (SAH), and S-ade-L-methionine (SAM)). The method was standardized and validated by determining the selectivity, carryover, limits of detection, limits of quantitation, linearity, precision, accuracy, recovery, and matrix effects. The extraction methods were optimized with respect to several factors: protease-amylase treatment on embryos, deconjugation time, methanol precipitation, and proteins' isoelectric point precipitation on the folate recovery. Ten one-carbon folate metabolites and four one-carbon-related amino acids were detected using the UHPLC-MS/MS technique in various biological samples. The measured values of folate in human plasma, serum, and whole blood (WB) lay within the concentration range for normal donors. The contents of each analyte in mouse plasma were as follows: pABG (864.0 nmol/L), 5-CH3THF (202.2 nmol/L), hmTHF (122.2 nmol/L), Met (8.63 µmol/L), and SAH (0.06 µmol/L). The concentration of each analyte in mouse embryos were as follows: SAM (1.09 µg/g), SAH (0.13 µg/g), Met (16.5 µg/g), 5,10-CH+THF (74.3 ng/g), pABG (20.6 ng/g), and 5-CH3THF (185.4 ng/g). A simple and rapid sample preparation and UHPLC-MS/MS method was developed and validated for the simultaneous determination of the one-carbon-related folate metabolites and one-carbon-related amino acids in different biological samples.


Asunto(s)
Carbono , Espectrometría de Masas en Tándem , Humanos , Ratones , Animales , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Ácido Fólico/metabolismo , Metionina , Racemetionina , Ácido Glutámico , Homocisteína
15.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928425

RESUMEN

The levels of the MMPs in the biological samples of confirmed patients with gastric cancer are significantly elevated compared to those found in healthy people. Therefore, a novel 3D stochastic microsensor based on graphene oxide, modified with gold nanoparticles and (Z)-N-(pyridin-4-yl-methyl) octadec-9-enamide (namely N2-AuNP/GO), was designed for the determination of MMP-2 in biological samples, and validated for the screening tests of biological samples in order to be used for the early diagnosis of gastric cancer. The proposed sensor presents a low limit of quantification (1.00 × 10-22 g mL-1), high sensitivity (1.84 × 107 s-1 g-1 mL), and a wide working concentration range (1.00 × 10-22-1.00 × 10-7 g mL-1). Recovery values higher than 99.15% were recorded for the assay of MMP-2 in whole blood, gastric tissue tumors, saliva, and urine samples.


Asunto(s)
Oro , Grafito , Metaloproteinasa 2 de la Matriz , Nanopartículas del Metal , Grafito/química , Humanos , Metaloproteinasa 2 de la Matriz/sangre , Metaloproteinasa 2 de la Matriz/orina , Metaloproteinasa 2 de la Matriz/metabolismo , Nanopartículas del Metal/química , Oro/química , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/sangre , Técnicas Biosensibles/métodos
16.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731917

RESUMEN

Proton magnetic resonance spectroscopy (1H MRS) presents a powerful tool for revealing molecular-level metabolite information, complementary to the anatomical insight delivered by magnetic resonance imaging (MRI), thus playing a significant role in in vivo/in vitro biological studies. However, its further applications are generally confined by spectral congestion caused by numerous biological metabolites contained within the limited proton frequency range. Herein, we propose a pure-shift-based 1H localized MRS method as a proof of concept for high-resolution studies of biological samples. Benefitting from the spectral simplification from multiplets to singlet peaks, this method addresses the challenge of spectral congestion encountered in conventional MRS experiments and facilitates metabolite analysis from crowded NMR resonances. The performance of the proposed pure-shift 1H MRS method is demonstrated on different kinds of samples, including brain metabolite phantom and in vitro biological samples of intact pig brain tissue and grape tissue, using a 7.0 T animal MRI scanner. This proposed MRS method is readily implemented in common commercial NMR/MRI instruments because of its generally adopted pulse-sequence modules. Therefore, this study takes a meaningful step for MRS studies toward potential applications in metabolite analysis and disease diagnosis.


Asunto(s)
Encéfalo , Espectroscopía de Protones por Resonancia Magnética , Animales , Porcinos , Espectroscopía de Protones por Resonancia Magnética/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vitis/química , Fantasmas de Imagen
17.
Wiad Lek ; 77(6): 1263-1270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39106390

RESUMEN

OBJECTIVE: Aim: This article is aimed at raising awareness and stimulating scientific discussion on the necessity of involving qualified medical professionals in conducting criminal procedural actions that involve intervention in human somatic rights, in order to further improve the legal instruments ensuring compliance with the European Court of Human Rights (hereinafter referred to as the ECHR) standards in this field. PATIENTS AND METHODS: Materials and Methods: In preparing the article, the following issues were worked out: the provisions of international legal acts; legal positions of the ECHR related to the use of medical knowledge in the criminal process; scientific studies of various aspects of the use of medical knowledge in the criminal process. The methodological basis of the research is dialectical, comparative-legal, systemic-structural, analytical, synthetic, complex research methods. CONCLUSION: Conclusions: The use of medical knowledge in the criminal process generally takes two forms: (a) expert and (b) ancillary. The expert form, particularly forensic medical examination, must adhere to a set of criteria reflected in the practice of the ECHR. Personal searches involving penetration into human body cavities generally align with the requirements of the he European Convention on Human Rights (hereinafter referred to as the Convention), provided certain conditions are met, including medical considerations. The criterion for the admissibility of coercive collection of biological samples for examination is the existence of samples independent of the individual's will.


Asunto(s)
Derechos Humanos , Humanos , Derechos Humanos/legislación & jurisprudencia , Europa (Continente) , Medicina Legal/legislación & jurisprudencia , Testimonio de Experto/legislación & jurisprudencia , Derecho Penal/legislación & jurisprudencia
18.
Crit Rev Food Sci Nutr ; : 1-7, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37283051

RESUMEN

The Folin-Ciocalteu method is a well-established and widely used assay for measuring total (poly)phenol content in food/plant products. In recent years, there has been growing interest in applying this method to human samples due to its simplicity and efficacy. However, biological matrices such as blood and urine contain several interference substances that must be eliminated beforehand. This mini-review summarizes the current state of knowledge regarding the use of the Folin-Ciocalteu assay to measure total phenolic content in human urine and blood samples, as well as the preceding cleaning methods to remove interferences. Higher total (poly)phenol levels measured by the Folin-Ciocalteu method have been associated with a decrease in mortality and several risk variables. We focus on the application of this sustainable assay as a biomarker of poly(phenol) intake and its potential use as an anti-inflammatory biomarker in clinical laboratories. The Folin-Ciocalteu method, with a clean-up extraction step, is a reliable tool for determining total (poly)phenol consumption. Here, we also recommend using the Folin-Ciocalteu assay as means to measure anti-inflammatory activity.

19.
Anal Bioanal Chem ; 415(26): 6573-6582, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37736841

RESUMEN

Sphingolipids play crucial roles in cellular membranes, myelin stability, and signalling responses to physiological cues and stress. Among them, sphingosine 1-phosphate (S1P) has been recognized as a relevant biomarker for neurodegenerative diseases, and its analogue FTY-720 has been approved by the FDA for the treatment of relapsing-remitting multiple sclerosis. Focusing on these targets, we here report three novel polymeric capture phases for the selective extraction of the natural biomarker and its analogue drug. To enhance analytical performance, we employed different synthetic approaches using a cationic monomer and a hydrophobic copolymer of styrene-DVB. Results have demonstrated high affinity of the sorbents towards S1P and fingolimod phosphate (FTY-720-P, FP). This evidence proved that lipids containing phosphate diester moiety in their structures did not constitute obstacles for the interaction of phosphate monoester lipids when loaded into an SPE cartridge. Our suggested approach offers a valuable tool for developing efficient analytical procedures.

20.
Anal Bioanal Chem ; 415(18): 4125-4145, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37329466

RESUMEN

The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.


Asunto(s)
Microscopía , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Rayos Láser
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA