Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
Más filtros

Intervalo de año de publicación
1.
Am J Obstet Gynecol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969197

RESUMEN

Fluid management in obstetrical care is crucial because of the complex physiological conditions of pregnancy, which complicate clinical manifestations and fluid balance management. This expert review examined the use of point-of-care ultrasound to evaluate and monitor the response to fluid therapy in pregnant patients. Pregnancy induces substantial physiological changes, including increased cardiac output and glomerular filtration rate, decreased systemic vascular resistance, and decreased plasma oncotic pressure. Conditions, such as preeclampsia, further complicate fluid management because of decreased intravascular volume and increased capillary permeability. Traditional methods for assessing fluid volume status, such as physical examination and invasive monitoring, are often unreliable or inappropriate. Point-of-care ultrasound provides a noninvasive, rapid, and reliable means to assess fluid responsiveness, which is essential for managing fluid therapy in pregnant patients. This review details the various point-of-care ultrasound modalities used to measure dynamic changes in fluid status, focusing on the evaluation of the inferior vena cava, lung ultrasound, and left ventricular outflow tract. Inferior vena cava ultrasound in spontaneously breathing patients determines diameter variability, predicts fluid responsiveness, and is feasible even late in pregnancy. Lung ultrasound is crucial for detecting early signs of pulmonary edema before clinical symptoms arise and is more accurate than traditional radiography. The left ventricular outflow tract velocity time integral assesses stroke volume response to fluid challenges, providing a quantifiable measure of cardiac function, which is particularly beneficial in critical care settings where rapid and accurate fluid management is essential. This expert review synthesizes current evidence and practice guidelines, suggesting the integration of point-of-care ultrasound as a fundamental aspect of fluid management in obstetrics. It calls for ongoing research to enhance techniques and validate their use in broader clinical settings, aiming to improve outcomes for pregnant patients and their babies by preventing complications associated with both under- and overresuscitation.

2.
Crit Care ; 28(1): 52, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374167

RESUMEN

BACKGROUND: Current recommendations support guiding fluid resuscitation through the assessment of fluid responsiveness. Recently, the concept of fluid tolerance and the prevention of venous congestion (VC) have emerged as relevant aspects to be considered to avoid potentially deleterious side effects of fluid resuscitation. However, there is paucity of data on the relationship of fluid responsiveness and VC. This study aims to compare the prevalence of venous congestion in fluid responsive and fluid unresponsive critically ill patients after intensive care (ICU) admission. METHODS: Multicenter, prospective cross-sectional observational study conducted in three medical-surgical ICUs in Chile. Consecutive mechanically ventilated patients that required vasopressors and admitted < 24 h to ICU were included between November 2022 and June 2023. Patients were assessed simultaneously for fluid responsiveness and VC at a single timepoint. Fluid responsiveness status, VC signals such as central venous pressure, estimation of left ventricular filling pressures, lung, and abdominal ultrasound congestion indexes and relevant clinical data were collected. RESULTS: Ninety patients were included. Median age was 63 [45-71] years old, and median SOFA score was 9 [7-11]. Thirty-eight percent of the patients were fluid responsive (FR+), while 62% were fluid unresponsive (FR-). The most prevalent diagnosis was sepsis (41%) followed by respiratory failure (22%). The prevalence of at least one VC signal was not significantly different between FR+ and FR- groups (53% vs. 57%, p = 0.69), as well as the proportion of patients with 2 or 3 VC signals (15% vs. 21%, p = 0.4). We found no association between fluid balance, CRT status, or diagnostic group and the presence of VC signals. CONCLUSIONS: Venous congestion signals were prevalent in both fluid responsive and unresponsive critically ill patients. The presence of venous congestion was not associated with fluid balance or diagnostic group. Further studies should assess the clinical relevance of these results and their potential impact on resuscitation and monitoring practices.


Asunto(s)
Hiperemia , Sepsis , Humanos , Persona de Mediana Edad , Anciano , Enfermedad Crítica/epidemiología , Enfermedad Crítica/terapia , Estudios Prospectivos , Estudios Transversales , Hiperemia/complicaciones , Sepsis/complicaciones , Fluidoterapia/métodos
3.
Br J Anaesth ; 133(2): 241-244, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876923

RESUMEN

Variants of perioperative cardiac output-guided haemodynamic therapy algorithms have been tested over the last few decades, without clear evidence of effectiveness. Newer approaches have focussed on individualisation of physiological targets and have been tested in early efficacy trials. Uncertainty about the benefits remains. Adoption of novel trial designs could overcome the limitations of smaller trials of this complex intervention and accelerate the exploration of future developments.


Asunto(s)
Gasto Cardíaco , Hemodinámica , Humanos , Algoritmos , Gasto Cardíaco/fisiología , Ensayos Clínicos como Asunto/métodos , Fluidoterapia/métodos , Objetivos , Hemodinámica/fisiología , Atención Perioperativa/métodos , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Proyectos de Investigación
4.
J Intensive Care Med ; 39(7): 628-635, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38190576

RESUMEN

Background: The likelihood of a patient being preload responsive-a state where the cardiac output or stroke volume (SV) increases significantly in response to preload-depends on both cardiac filling and function. This relationship is described by the canonical Frank-Starling curve. Research Question: We hypothesize that a novel method for phenotyping hypoperfused patients (ie, the "Doppler Starling curve") using synchronously measured jugular venous Doppler as a marker of central venous pressure (CVP) and corrected flow time of the carotid artery (ccFT) as a surrogate for SV will refine the pretest probability of preload responsiveness/unresponsiveness. Study Design and Methods: We retrospectively analyzed a prospectively collected convenience sample of hypoperfused adult emergency department (ED) patients. Doppler measurements were obtained before and during a preload challenge using a wireless, wearable Doppler ultrasound system. Based on internal jugular and carotid artery Doppler surrogates of CVP and SV, respectively, we placed hemodynamic assessments into quadrants (Qx) prior to preload augmentation: low CVP with normal SV (Q1), high CVP and normal SV (Q2), low CVP and low SV (Q3) and high CVP and low SV (Q4). The proportion of preload responsive and unresponsive assessments in each quadrant was calculated based on the maximal change in ccFT (ccFTΔ) during either a passive leg raise or rapid fluid challenge. Results: We analyzed 41 patients (68 hemodynamic assessments) between February and April 2021. The prevalence of each phenotype was: 15 (22%) in Q1, 8 (12%) in Q2, 39 (57%) in Q3, and 6 (9%) in Q4. Preload unresponsiveness rates were: Q1, 20%; Q2, 50%; Q3, 33%, and Q4, 67%. Interpretation: Even fluid naïve ED patients with sonographic estimates of low CVP have high rates of fluid unresponsiveness, making dynamic testing valuable to prevent ineffective IVF administration.


Asunto(s)
Arterias Carótidas , Fluidoterapia , Venas Yugulares , Ultrasonografía Doppler , Humanos , Proyectos Piloto , Masculino , Femenino , Fluidoterapia/métodos , Persona de Mediana Edad , Venas Yugulares/diagnóstico por imagen , Estudios Prospectivos , Arterias Carótidas/diagnóstico por imagen , Anciano , Resucitación/métodos , Presión Venosa Central/fisiología , Estudios Retrospectivos , Adulto , Volumen Sistólico/fisiología , Gasto Cardíaco/fisiología , Servicio de Urgencia en Hospital , Hemodinámica
5.
BMC Pregnancy Childbirth ; 24(1): 60, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216901

RESUMEN

BACKGROUND: Present evidence suggests that the Doppler ultrasonographic indices, such as carotid artery blood flow (CABF) and velocity time integral (VTI), had the ability to predict fluid responsiveness in non-obstetric patients. The purpose of this study was to assess their capacity to predict fluid responsiveness in spontaneous breathing parturients undergoing caesarean section and to determine the effect of detecting and management of hypovolemia (fluid responsiveness) on the incidence of hypotension after anaesthesia. METHODS: A total of 72 full term singleton parturients undergoing elective caesarean section were enrolled in this study. CABF, VTI, and hemodynamic parameters were recorded before and after fluid challenge and assessed by carotid artery ultrasonography. Fluid responsiveness was defined as an increase in stroke volume index (SVI) of 15% or more after the fluid challenge. RESULTS: Thirty-one (43%) patients were fluid responders. The area under the ROC curve to predict fluid responsiveness for CABF and VTI were 0.803 (95% CI, 0.701-0.905) and 0.821 (95% CI, 0.720-0.922). The optimal cut-off values of CABF and VTI for fluid responsiveness was 175.9 ml/min (sensitivity of 74.0%; specificity of 78.0%) and 8.7 cm/s (sensitivity of 67.0%; specificity of 90.0%). The grey zone for CABF and VTI were 114.2-175.9 ml/min and 6.8-8.7 cm/s. The incidence of hypotension after the combined spinal-epidural anaesthesia (CSEA) was significantly higher in the Responders group 25.8% (8/31) than in the Non-Responders group 17.1(7/41) (P < 0.001). The total incidence of hypotension after CSEA of the two groups was 20.8% (15/72). CONCLUSIONS: Ultrasound evaluation of CABF and VTI seem to be the feasible parameters to predict fluid responsiveness in parturients undergoing elective caesarean section and detecting and management of hypovolemia (fluid responsiveness) could significantly decrease incidence of hypotension after anaesthesia. TRIAL REGISTRATION: The trial was registered at the Chinese Clinical Trial Registry (ChiCTR) ( www.chictr.org ), registration number was ChiCTR1900022327 (The website link: https://www.chictr.org.cn/showproj.html?proj=37271 ) and the date of trial registration was in April 5, 2019. This study was performed in accordance with the Declaration of Helsinki and approved by the Research Ethics Committee of Women's Hospital, Zhejiang University School of Medicine (20,180,120).


Asunto(s)
Cesárea , Hipotensión , Humanos , Femenino , Embarazo , Cesárea/efectos adversos , Hipovolemia/etiología , Estudios Prospectivos , Hemodinámica/fisiología , Arterias Carótidas/diagnóstico por imagen , Hipotensión/etiología , Ultrasonografía de las Arterias Carótidas , Fluidoterapia , Velocidad del Flujo Sanguíneo/fisiología
6.
BMC Anesthesiol ; 24(1): 88, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431582

RESUMEN

BACKGROUND: Tracking preload dependency non-invasively to maintain adequate tissue perfusion in the perioperative period can be challenging.The effect of phenylephrine on stroke volume is dependent upon preload. Changes in stroke volume induced by phenylephrine administration can be used to predict preload dependency. The change in the peripheral perfusion index derived from photoplethysmography signals reportedly corresponds with changes in stroke volume in situations such as body position changes in the operating room. Thus, the peripheral perfusion index can be used as a non-invasive potential alternative to stroke volume to predict preload dependency. Herein, we aimed to determine whether changes in perfusion index induced by the administration of phenylephrine could be used to predict preload dependency. METHODS: We conducted a prospective single-centre observational study. The haemodynamic parameters and perfusion index were recorded before and 1 and 2 min after administering 0.1 mg of phenylephrine during post-induction hypotension in patients scheduled to undergo surgery. Preload dependency was defined as a stroke volume variation of ≥ 12% before phenylephrine administration at a mean arterial pressure of < 65 mmHg. Patients were divided into four groups according to total peripheral resistance and preload dependency. RESULTS: Forty-two patients were included in this study. The stroke volume in patients with preload dependency (n = 23) increased after phenylephrine administration. However, phenylephrine administration did not impact the stroke volume in patients without preload dependency (n = 19). The perfusion index decreased regardless of preload dependency. The changes in the perfusion index after phenylephrine administration exhibited low accuracy for predicting preload dependency. Based on subgroup analysis, patients with high total peripheral resistance tended to exhibit increased stroke volume following phenylephrine administration, which was particularly prominent in patients with high total peripheral resistance and preload dependency. CONCLUSION: The findings of the current study revealed that changes in the perfusion index induced by administering 0.1 mg of phenylephrine could not predict preload dependency. This may be attributed to the different phenylephrine-induced stroke volume patterns observed in patients according to the degree of total peripheral resistance and preload dependency. TRIAL REGISTRATION: University Hospital Medical Information Network (UMIN000049994 on 9/01/2023).


Asunto(s)
Anestesia General , Índice de Perfusión , Humanos , Fenilefrina/farmacología , Gasto Cardíaco , Estudios Prospectivos , Volumen Sistólico , Fluidoterapia , Presión Sanguínea
7.
BMC Anesthesiol ; 24(1): 273, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103769

RESUMEN

BACKGROUND: The selection of adequate indicators of tissue hypoxia for guiding the resuscitation process of septic patients is a highly relevant issue. Current guidelines advocate for the use of lactate as sole metabolic marker, which may be markedly limited, and the integration of different variables seems more adequate. In this study, we explored the metabolic profile and its implications in the response to the administration of a fluid challenge in early septic shock patients. METHODS: Observational study including septic shock patients within 24 h of ICU admission, monitored with a cardiac output estimation system, with ongoing resuscitation. Hemodynamic and metabolic variables were measured before and after a fluid challenge (FC). A two-step cluster analysis was used to define the baseline metabolic profile, including lactate, central venous oxygen saturation (ScvO2), central venous-to-arterial carbon dioxide difference (PcvaCO2), and PcvaCO2 corrected by the difference in arterial-to-venous oxygen content (PcvaCO2/CavO2). RESULTS: Seventy-seven fluid challenges were analyzed. Cluster analysis revealed two distinct metabolic profiles at baseline. Cluster A exhibited lower ScvO2, higher PcvaCO2, and lower PcvaCO2/CavO2. Increases in cardiac output (CO) were associated with increases in VO2 exclusively in cluster A. Baseline isolated metabolic variables did not correlate with VO2 response, and changes in ScvO2 and PcvaCO2 were associated to VO2 increase only in cluster A. CONCLUSIONS: In a population of early septic shock patients, two distinct metabolic profiles were identified, suggesting tissue hypoxia or dysoxia. Integrating metabolic variables enhances the ability to detect those patients whose VO2 might increase as results of fluid administration.


Asunto(s)
Fluidoterapia , Choque Séptico , Humanos , Choque Séptico/metabolismo , Choque Séptico/terapia , Choque Séptico/fisiopatología , Masculino , Fluidoterapia/métodos , Femenino , Persona de Mediana Edad , Análisis por Conglomerados , Anciano , Hipoxia/metabolismo , Gasto Cardíaco/fisiología , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Oxígeno/metabolismo , Oxígeno/sangre , Estudios Prospectivos
8.
Echocardiography ; 41(8): e15901, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39115456

RESUMEN

PURPOSE: Cardiogenic shock still has a high mortality. In order to correctly manage these patients, it is useful to have available haemodynamic parameters, invasive and non-invasive. The aim of this review is to show the current evidence on the use of echocardiographic aortic flow assessment by left ventricular outflow tract - velocity time integral. METHODS: Publications relevant to the discussion of echocardiographic aortic flow assessment by left ventricular outflow tract - velocity time integral and cardiogenic shock, were retrieved from PubMed®. RESULTS: Left ventricular outflow tract - velocity time integral is an easily sampled and reproducible parameter that has already been shown to have prognostic value in various cardiovascular pathologies, including myocardial infarction and heart failure. Although there are still few data available in the literature, the LVOT-VTI also seems to have an important role in CS from prognosis to guidance in the escalation/de-escalation of vasoactive therapy and to support devices by allowing an estimate of patient's probability of response to fluid administration. CONCLUSION: Aortic flow assessment can become a very useful invasive parameter in the management of cardiogenic shock.


Asunto(s)
Ecocardiografía Doppler , Choque Cardiogénico , Humanos , Choque Cardiogénico/fisiopatología , Choque Cardiogénico/diagnóstico por imagen , Ecocardiografía Doppler/métodos , Velocidad del Flujo Sanguíneo/fisiología , Aorta/diagnóstico por imagen , Aorta/fisiopatología , Pronóstico
9.
J Cardiothorac Vasc Anesth ; 38(2): 459-465, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38114373

RESUMEN

OBJECTIVE: The authors aimed to evaluate the precision of changes in systolic-pressure variation after passive leg raising (PLR) as a predictor of fluid responsiveness in postoperative critically ill patients, and to compare the precision of changes in pulse-pressure variation after PLR (ΔPPVPLR) with changes in systolic-pressure variation after PLR (ΔSPVPLR). DESIGN: A prospective observational study. SETTING: A surgical intensive care unit of a tertiary hospital. PARTICIPANTS: Seventy-four postoperative critically ill patients with acute circulatory failure were enrolled. INTERVENTIONS: Fluid responsiveness was defined as an increase of 10% or more in stroke volume after PLR, dividing patients into 2 groups: responders and nonresponders. MEASUREMENT AND MAIN RESULTS: Hemodynamic data were recorded at baseline and after PLR, and the stroke volume was measured by transthoracic echocardiography. Thirty-eight patients were responders, and 36 were nonresponders. ΔPPVPLR predicted fluid responsiveness with an area under the receiver operating characteristic curve (AUC) of 0.917, and the optimal cutoff value was 2.3%, with a gray zone of 1.6% to 3.3%, including 19 (25.7%) patients. ΔSPVPLR predicted fluid responsiveness with an AUC of 0.908, and the optimal cutoff value was 1.9%, with a gray zone of 1.1% to 2.0%, including 18 (24.3%) patients. No notable distinction was observed between the AUC for ΔPPVPLR and ΔSPVPLR (p = 0.805) in predicting fluid responsiveness. CONCLUSIONS: ΔSPVPLR and ΔPPVPLR could accurately predict fluid responsiveness in postoperative critically ill patients. There was no difference in the ability to predict fluid responsiveness between ΔSPVPLR and ΔPPVPLR.


Asunto(s)
Enfermedad Crítica , Pierna , Humanos , Fluidoterapia , Presión Sanguínea , Hemodinámica , Volumen Sistólico , Respiración Artificial
10.
Paediatr Anaesth ; 34(6): 559-567, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38348932

RESUMEN

BACKGROUND: Intraoperative fluid therapy maintains normovolemia, normal tissue perfusion, normal metabolic function, normal electrolytes, and acid-base status. Plethysmographic variability index has been shown to predict fluid responsiveness but its role in guiding intraoperative fluid therapy is still elusive. AIMS: The aim of the present study was to compare intraoperative goal-directed fluid therapy based on plethysmographic variability index with liberal fluid therapy in term neonates undergoing abdominal surgeries. METHODS: A prospective randomized controlled study was conducted in a tertiary care centre, over a period of 18 months. A total of 30 neonates completed the study out of 132 neonates screened. Neonates with tracheoesophageal fistula, congenital diaphragmatic hernia, congenital heart disease, respiratory disorders, creatinine clearance <90 mL/min and who were hemodynamically unstable were excluded. Neonates were randomized to goal-directed fluid therapy group where the plethysmographic variability index was targeted at <18 or liberal fluid therapy group. Primary outcome was comparison of total amount of fluid infused intraoperatively in both the groups. Secondary outcomes included intraoperative and postoperative arterial blood gas parameters, biochemical parameters, use of vasopressors, number of fluid boluses, complications and duration of hospital stay. RESULTS: There was no significant difference in total intraoperative fluid infused [90 (84-117.5 mL) in goal-directed fluid therapy and 105 (85.5-144.5 mL) in liberal fluid therapy group (p = .406)], median difference (95% CI) -15 (-49.1 to 19.1). There was a decrease in serum lactate levels in both groups from preoperative to postoperative 24 h. The amount of fluid infused before dopamine administration was significantly higher in liberal fluid therapy group (58 [50.25-65 mL]) compared to goal-directed fluid therapy group (36 [22-44 mL], p = .008), median difference (95% CI) -22 (-46 to 2). In postoperative period, the total amount of fluid intake over 24 h was comparable in two groups (222 [204-253 mL] in goal-directed fluid therapy group and 224 [179.5-289.5 mL] in liberal fluid therapy group, p = .917) median difference (95% CI) cutoff -2 (-65.3 to 61.2). CONCLUSION: Intraoperative plethysmographic variability index-guided goal-directed fluid therapy was comparable to liberal fluid therapy in terms of total volume of fluid infused in neonates during perioperative period. More randomized controlled trials with higher sample size are required. TRIAL REGISTRATION: Central Trial Registry of India (CTRI/2020/02/023561).


Asunto(s)
Abdomen , Fluidoterapia , Pletismografía , Humanos , Fluidoterapia/métodos , Recién Nacido , Estudios Prospectivos , Masculino , Femenino , Pletismografía/métodos , Abdomen/cirugía , Análisis de los Gases de la Sangre/métodos , Cuidados Intraoperatorios/métodos , Resultado del Tratamiento
11.
J Clin Monit Comput ; 38(5): 981-990, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38819726

RESUMEN

The Inferior Vena Cava (IVC) is commonly utilized to evaluate fluid status in the Intensive Care Unit (ICU),with more recent emphasis on the study of venous congestion. It is predominantly measured via subcostal approach (SC) or trans-hepatic (TH) views, and automated border tracking (ABT) software has been introduced to facilitate its assessment. Prospective observational study on patients ventilated in pressure support ventilation (PSV) with 2 × 2 factorial design. Primary outcome was to evaluate interchangeability of measurements of the IVC and the distensibility index (DI) obtained using both M-mode and ABT, across both SC and TH. Statistical analyses comprised Bland-Altman assessments for mean bias, limits of agreement (LoA), and the Spearman correlation coefficients. IVC visualization was 100% successful via SC, while TH view was unattainable in 17.4% of cases. As compared to the M-mode, the IVC-DI obtained through ABT approach showed divergences in both SC (mean bias 5.9%, LoA -18.4% to 30.2%, ICC = 0.52) and TH window (mean bias 6.2%, LoA -8.0% to 20.4%, ICC = 0.67). When comparing the IVC-DI measures obtained in the two anatomical sites, accuracy improved with a mean bias of 1.9% (M-mode) and 1.1% (ABT), but LoA remained wide (M-mode: -13.7% to 17.5%; AI: -19.6% to 21.9%). Correlation was generally suboptimal (r = 0.43 to 0.60). In PSV ventilated patients, we found that IVC-DI calculated with M-mode is not interchangeable with ABT measurements. Moreover, the IVC-DI gathered from SC or TH view produces not comparable results, mainly in terms of precision.


Asunto(s)
Unidades de Cuidados Intensivos , Respiración Artificial , Vena Cava Inferior , Humanos , Estudios Prospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Respiración Artificial/métodos , Programas Informáticos , Reproducibilidad de los Resultados , Monitoreo Fisiológico/métodos , Hígado , Adulto , Tomografía Computarizada por Rayos X/métodos , Respiración con Presión Positiva/métodos
12.
J Clin Monit Comput ; 38(5): 991-996, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38844602

RESUMEN

This study retrospectively examined the hemodynamic effects of passive leg raising (PLR) in mechanically ventilated patients during fluid removal before spontaneous breathing trials. In previous studies, we noticed varying cardiac responses after PLR completion, particularly in positive tests. Using a bioreactance monitor, we recorded and analyzed hemodynamic parameters, including stroke volume and cardiac index (CI), before and after PLR in post-acute ICU patients. We included 27 patients who underwent 60 PLR procedures. In preload-unresponsive patients, no significant CI changes were observed (CI_t-6 = 3.7 [2.6; 4.7] mL/min/m2 vs. CI_t9 = 3.3 [2.5; 3.4] mL/min/m2; p = 0.306), while in preload-responsive patients, two distinct CI response types to PLR were identified: a transient peak with immediate return to baseline (CI_t-6 = 2.7 [2.5; 3.1] mL/min/m2 vs. 3.3 [2.6; 3.8] L/min/m2; p = 0.119) and a sustained CI elevation lasting beyond the PLR maneuver (CI_t-6 = 2.8 [2.3; 2.9] L/min/m2 vs. 3.3 [2.8; 3.9] ml/min/m2; p = 0.034). The latter was particularly noted when ΔCI during PLR exceeded 25%. Our findings suggest that in certain preload-responsive patients, PLR can induce a more sustained increase in CI, indicating a possible persistent hemodynamic effect. This effect could be due to a combination of autotransfusion and sympathetic activation affecting venous return and vascular tone. Further research in larger cohorts and more comprehensive hemodynamic assessments are warranted to validate these observations and elucidate the possible underlying mechanisms.The Fluid unLoading On Weaning (FLOW) study was prospectively registered under the ID NCT04496583 on 2020-07-29 at ClinicalTrials.gov.


Asunto(s)
Gasto Cardíaco , Hemodinámica , Pierna , Respiración Artificial , Volumen Sistólico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Pierna/irrigación sanguínea , Anciano , Respiración Artificial/métodos , Volumen Sistólico/fisiología , Unidades de Cuidados Intensivos , Corazón/fisiología , Monitoreo Fisiológico/métodos , Adulto
13.
J Clin Monit Comput ; 38(2): 313-323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38064135

RESUMEN

Dynamic preload parameters are used to guide perioperative fluid management. However, reported cut-off values vary and the presence of a gray zone complicates clinical decision making. Measurement error, intrinsic to the calculation of pulse pressure variation (PPV) has not been studied but could contribute to this level of uncertainty. The purpose of this study was to quantify and compare measurement errors associated with PPV calculations. Hemodynamic data of patients undergoing liver transplantation were extracted from the open-access VitalDatabase. Three algorithms were applied to calculate PPV based on 1 min observation periods. For each method, different durations of sampling periods were assessed. Best Linear Unbiased Prediction was determined as the reference PPV-value for each observation period. A Bayesian model was used to determine bias and precision of each method and to simulate the uncertainty of measured PPV-values. All methods were associated with measurement error. The range of differential and proportional bias were [- 0.04%, 1.64%] and [0.92%, 1.17%] respectively. Heteroscedasticity influenced by sampling period was detected in all methods. This resulted in a predicted range of reference PPV-values for a measured PPV of 12% of [10.2%, 13.9%] and [10.3%, 15.1%] for two selected methods. The predicted range in reference PPV-value changes for a measured absolute change of 1% was [- 1.3%, 3.3%] and [- 1.9%, 4%] for these two methods. We showed that all methods that calculate PPV come with varying degrees of uncertainty. Accounting for bias and precision may have important implications for the interpretation of measured PPV-values or PPV-changes.


Asunto(s)
Fluidoterapia , Hemodinámica , Humanos , Presión Sanguínea , Teorema de Bayes , Fluidoterapia/métodos , Algoritmos , Volumen Sistólico
14.
J Clin Monit Comput ; 38(1): 57-67, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37968547

RESUMEN

Pulse pressure variation (PPV) is a well-established method for predicting fluid responsiveness in mechanically ventilated patients. The predictive accuracy is, however, disputed for ventilation with low tidal volume (VT) or low heart-rate-to-respiratory-rate ratio (HR/RR). We investigated the effects of VT and RR on PPV and on PPV's ability to predict fluid responsiveness. We included patients scheduled for open abdominal surgery. Prior to a 250 ml fluid bolus, we ventilated patients with combinations of VT from 4 to 10 ml kg-1 and RR from 10 to 31 min-1. For each of 10 RR-VT combinations, PPV was derived using both a classic approach and a generalized additive model (GAM) approach. The stroke volume (SV) response to fluid was evaluated using uncalibrated pulse contour analysis. An SV increase > 10% defined fluid responsiveness. Fifty of 52 included patients received a fluid bolus. Ten were fluid responders. For all ventilator settings, fluid responsiveness prediction with PPV was inconclusive with point estimates for the area under the receiver operating characteristics curve between 0.62 and 0.82. Both PPV measures were nearly proportional to VT. Higher RR was associated with lower PPV. Classically derived PPV was affected more by RR than GAM-derived PPV. Correcting PPV for VT could improve PPV's predictive utility. Low HR/RR has limited effect on GAM-derived PPV, indicating that the low HR/RR limitation is related to how PPV is calculated. We did not demonstrate any benefit of GAM-derived PPV in predicting fluid responsiveness.Trial registration: ClinicalTrials.gov, reg. March 6, 2020, NCT04298931.


Asunto(s)
Fluidoterapia , Frecuencia Respiratoria , Humanos , Presión Sanguínea/fisiología , Volumen de Ventilación Pulmonar , Fluidoterapia/métodos , Volumen Sistólico/fisiología , Pulmón , Respiración Artificial/métodos , Hemodinámica/fisiología
15.
Chin J Traumatol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38789315

RESUMEN

PURPOSE: Assessing fluid responsiveness relying on central venous oxygen saturation (ScvO2) yields varied outcomes across several studies. This study aimed to determine the ability of the change in ScvO2 (ΔScvO2) to detect fluid responsiveness in ventilated septic shock patients and potential influencing factors. METHODS: In this prospective, single-center study, all patients conducted from February 2023 to January 2024 received fluid challenge. Oxygen consumption was measured by indirect calorimetry, and fluid responsiveness was defined as an increase of cardiac index (CI) ≥ 10% measured by transthoracic echocardiography. Multivariate linear regression analysis was conducted to evaluate the impact of oxygen consumption, arterial oxygen saturation, CI, and hemoglobin on ScvO2 and its change before and after fluid challenge. RESULTS: Among 49 patients (31 men, aged (59 ± 18) years), 27 were responders. The patients had an acute physiology and chronic health evaluation II score of 24 ± 8, a sequential organ failure assessment score of 11 ± 4, and a blood lactate level of (3.2 ± 3.1) mmol/L at enrollment. After the fluid challenge, the ΔScvO2 (mmHg) in the responders was greater than that in the non-responders (4 ± 6 vs. 1 ± 3, p = 0.019). Multivariate linear regression analysis suggested that CI was the only independent influencing factor of ScvO2, with R2 = 0.063, p = 0.008. After the fluid challenge, the change in CI became the only contributing factor to ΔScvO2 (R2 = 0.245, p < 0.001). ΔScvO2 had a good discriminatory ability for the responders and non-responders with a threshold of 4.4% (area under the curve = 0.732, p = 0.006). CONCLUSION: ΔScvO2 served as a reliable surrogate marker for ΔCI and could be utilized to assess fluid responsiveness, given that the change of CI was the sole contributing factor to the ΔScvO2. In stable hemoglobin conditions, the absolute value of ScvO2 could serve as a monitoring indicator for adequate oxygen delivery independent of oxygen consumption.

16.
Med J Armed Forces India ; 80(1): 52-59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38261854

RESUMEN

Background: Prediction of fluid responsiveness in hypotensive patients is a challenge. The correlation between a novel noninvasive dynamic indicator, Pleth Variability Index (PVI ®), and a gold-standard Systolic Pressure Variation (SPV) as a measure of fluid responsiveness was assessed in the Intensive Care Unit (ICU) or Operation Theatre (OT) in a tertiary care hospital. Methods: A prospective experimental study was conducted over a span of one year on 100 mechanically ventilated patients with hypotension. Vital parameters along with SPV and PVI ® were recorded before and after a standard volume expansion protocol. A 10% SPV threshold was used to define fluid responders and nonresponders. Results: Pearson's correlation graph at baseline showed positive correlation between PVI ® and SPV (r = 0.59, p-value = 0.001). Strength of correlation was comparatively less but still showed positive correlation at 15 (r = 0.39, p-value = 0.009) and 30 (r = 0.404, p-value = 0.004) minutes of fluid bolus. The Bland Altman analysis of baseline values of PVI ® and SPV showed good agreement with a mean bias of 9.05. Percentage change of PVI ® and SPV over 30 min showed a statistically significant positive correlation in the responder group (r = 0.53, p < 0.05). A threshold value of PVI ® more than 18% before volume expansion differentiated fluid responders and nonresponders with a sensitivity of 75% and specificity of 67%, with an area under Receiver Operating Characteristic (ROC) of 0.78. Conclusion: A positive correlation exists between SPV and PVI ®, justifying the use of noninvasive PVI ® in a clinical setting of hypotension.

17.
Indian J Crit Care Med ; 28(7): 650-656, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994256

RESUMEN

Aim: Acute circulatory failure is commonly encountered in critically ill patients, that requires fluid administration as the first line of treatment. However, only 50% of patients are fluid-responsive. Identification of fluid responders is essential to avoid the harmful effects of overzealous fluid therapy. Electrical cardiometry (EC) is a non-invasive bedside tool and has proven to be as good as transthoracic echocardiography (TTE) to track changes in cardiac output. We aimed to look for an agreement between EC and TTE for tracking changes in cardiac output in adult patients with acute circulatory failure before and after the passive leg-raising maneuver. Materials and methods: Prospective comparative study, conducted at a Tertiary Care Teaching Hospital. Results: We recruited 125 patients with acute circulatory failure and found 42.4% (53 out of 125) to be fluid-responsive. The Bland-Altman plot analysis showed a mean difference of 2.08 L/min between EC and TTE, with a precision of 3.8 L/min. The limits of agreement (defined as bias ± 1.96SD), were -1.7 L/min and 5.8 L/min, respectively. The percentage of error between EC and TTE was 56% with acceptable limits of 30%. Conclusion: The percentage error beyond the acceptable limit suggests the non-interchangeability of the two techniques. More studies with larger sample sizes are required to establish the interchangeability of EC with TTE for tracking changes in cardiac output in critically ill patients with acute circulatory failure. How to cite this article: Sharma S, Ramachandran R, Rewari V, Trikha A. Evaluation of Electrical Cardiometry to Assess Fluid Responsiveness in Patients with Acute Circulatory Failure: A Comparative Study with Transthoracic Echocardiography. Indian J Crit Care Med 2024;28(7):650-656.

18.
Crit Care ; 27(1): 431, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940953

RESUMEN

BACKGROUND: Pulse pressure and stroke volume variation (PPV and SVV) have been widely used in surgical patients as predictors of fluid challenge (FC) response. Several factors may affect the reliability of these indices in predicting fluid responsiveness, such as the position of the patient, the use of laparoscopy and the opening of the abdomen or the chest, combined FC characteristics, the tidal volume (Vt) and the type of anesthesia. METHODS: Systematic review and metanalysis of PPV and SVV use in surgical adult patients. The QUADAS-2 scale was used to assess the risk of bias of included studies. We adopted a metanalysis pooling of aggregate data from 5 subgroups of studies with random effects models using the common-effect inverse variance model. The area under the curve (AUC) of pooled receiving operating characteristics (ROC) curves was reported. A metaregression was performed using FC type, volume, and rate as independent variables. RESULTS: We selected 59 studies enrolling 2,947 patients, with a median of fluid responders of 55% (46-63). The pooled AUC for the PPV was 0.77 (0.73-0.80), with a mean threshold of 10.8 (10.6-11.0). The pooled AUC for the SVV was 0.76 (0.72-0.80), with a mean threshold of 12.1 (11.6-12.7); 19 studies (32.2%) reported the grey zone of PPV or SVV, with a median of 56% (40-62) and 57% (46-83) of patients included, respectively. In the different subgroups, the AUC and the best thresholds ranged from 0.69 and 0.81 and from 6.9 to 11.5% for the PPV, and from 0.73 to 0.79 and 9.9 to 10.8% for the SVV. A high Vt and the choice of colloids positively impacted on PPV performance, especially among patients with closed chest and abdomen, or in prone position. CONCLUSION: The overall performance of PPV and SVV in operating room in predicting fluid responsiveness is moderate, ranging close to an AUC of 0.80 only some subgroups of surgical patients. The grey zone of these dynamic indices is wide and should be carefully considered during the assessment of fluid responsiveness. A high Vt and the choice of colloids for the FC are factors potentially influencing PPV reliability. TRIAL REGISTRATION: PROSPERO (CRD42022379120), December 2022. https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=379120.


Asunto(s)
Hemodinámica , Quirófanos , Adulto , Humanos , Presión Sanguínea/fisiología , Volumen Sistólico/fisiología , Reproducibilidad de los Resultados , Coloides , Fluidoterapia , Curva ROC
19.
Crit Care ; 27(1): 45, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732851

RESUMEN

BACKGROUND: Pulse pressure variation (PPV) has been widely used in hemodynamic assessment. Nevertheless, PPV is limited in low tidal volume ventilation. We conducted this systematic review and meta-analysis to evaluate whether the tidal volume challenge (TVC) could improve the feasibility of PPV in patients ventilated at low tidal volumes. METHODS: PubMed, Embase and Cochrane Library inception to October 2022 were screened for diagnostic researches relevant to the predictability of PPV change after TVC in low tidal volume ventilatory patients. Summary receiving operating characteristic curve (SROC), pooled sensitivity and specificity were calculated. Subgroup analyses were conducted for possible influential factors of TVC. RESULTS: Ten studies with a total of 429 patients and 457 measurements were included for analysis. The predictive performance of PPV was significantly lower than PPV change after TVC in low tidal volume, with mean area under the receiving operating characteristic curve (AUROC) of 0.69 ± 0.13 versus 0.89 ± 0.10. The SROC of PPV change yielded an area under the curve of 0.96 (95% CI 0.94, 0.97), with overall pooled sensitivity and specificity of 0.92 (95% CI 0.83, 0.96) and 0.88 (95% CI 0.76, 0.94). Mean and median cutoff value of the absolute change of PPV (△PPV) were 2.4% and 2%, and that of the percentage change of PPV (△PPV%) were 25% and 22.5%. SROC of PPV change in ICU group, supine or semi-recumbent position group, lung compliance less than 30 cm H2O group, moderate positive end-expiratory pressure (PEEP) group and measurements devices without transpulmonary thermodilution group yielded 0.95 (95%0.93, 0.97), 0.95 (95% CI 0.92, 0.96), 0.96 (95% CI 0.94, 0.97), 0.95 (95% CI 0.93, 0.97) and 0.94 (95% CI 0.92, 0.96) separately. The lowest AUROCs of PPV change were 0.59 (95% CI 0.31, 0.88) in prone position and 0.73 (95% CI 0.60, 0.84) in patients with spontaneous breathing activity. CONCLUSIONS: TVC is capable to help PPV overcome limitations in low tidal volume ventilation, wherever in ICU or surgery. The accuracy of TVC is not influenced by reduced lung compliance, moderate PEEP and measurement tools, but TVC should be cautious applied in prone position and patients with spontaneous breathing activity. Trial registration PROSPERO (CRD42022368496). Registered on 30 October 2022.


Asunto(s)
Respiración con Presión Positiva , Respiración Artificial , Humanos , Presión Sanguínea , Volumen de Ventilación Pulmonar , Estudios de Factibilidad , Hemodinámica , Volumen Sistólico , Fluidoterapia
20.
Crit Care ; 27(1): 203, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237410

RESUMEN

BACKGROUND: Since oxygen content and oxygen consumption typically remain unchanged within a short period, variation in central venous oxygen saturation (ΔScvO2) during fluid challenge can theoretically track the changes in cardiac output (CO). We conducted this meta-analysis to systematically assess the diagnostic performance of ΔScvO2 during a fluid challenge for fluid responsiveness in mechanically ventilated patients receiving volume expansion. METHODS: Electronic databases were systematically searched to identify relevant studies published before October 24, 2022. As the cutoff value of ΔScvO2 was expected to vary across the included studies, we estimated the area under the hierarchical summary receiver operating characteristic curve (AUHSROC) as the primary measure of diagnostic accuracy. The optimal threshold of ΔScvO2 and the corresponding 95% confidential interval (CI) were also estimated. RESULTS: This meta-analysis included 5 observational studies comprising 240 participants, of whom 133 (55%) were fluid responders. Overall, the ΔScvO2 during the fluid challenge exhibited excellent performance for defining fluid responsiveness in mechanically ventilated patients receiving volume expansion, with an AUHSROC of 0.86 (95% CI 0.83-0.89), a pooled sensitivity of 0.78 (95% CI 0.69-0.85), a pooled specificity of 0.84 (95% CI 0.72-0.91), and a pooled diagnostic odds ratio of 17.7 (95% CI 5.9-53.2). The distribution of the cutoff values was nearly conically symmetrical and concentered between 3 and 5%; the mean and median cutoff values were 4% (95% CI 3-5%) and 4% (95% CI not estimable), respectively. CONCLUSIONS: In mechanically ventilated patients receiving volume expansion, the ΔScvO2 during the fluid challenge is a reliable indicator of fluid responsiveness. Clinical trial registration PROSPERO, https://www.crd.york.ac.uk/prospero/ , registry number: CRD42022370192.


Asunto(s)
Saturación de Oxígeno , Respiración Artificial , Humanos , Oximetría , Gasto Cardíaco , Curva ROC , Fluidoterapia , Hemodinámica , Estudios Observacionales como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA