Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 22(9): 2880-2889, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540094

RESUMEN

Brd4 has been intensively investigated as a promising drug target because of its implicated functions in oncogenesis, inflammation, and HIV-1 transcription. The formation of the Brd4-P-TEFb (CDK9/Cyclin T1) complex and its regulation of transcriptional elongation are critical for HIV latency reactivation and expression of many oncogenes. To further investigate the mechanism of the Brd4-P-TEFb complex in controlling elongation, mass spectrometry-based quantitative proteomics of the CDK9 interactome was performed. Upon treatment with the selective BET bromodomain inhibitor JQ1, 352 proteins were successfully identified with high confidence as CDK9-interacting proteins. Among them, increased bindings of HSP90 and CDC37 to CDK9 were particularly striking, and our data suggest that the HSP90-CDC37-P-TEFb complex is involved in controlling the dynamic equilibrium of the P-TEFb complex during BETi-induced reactivation of HIV-1 latency. Furthermore, the HSP90-CDC37-P-TEFb complex directly regulates HIV-1 transcription and relies on recruitment by heat shock factor 1 (HSF1) for binding to the HIV-1 promoter. These results advance the understanding of HSP90-CDC37-P-TEFb in HIV-1 latency reversal and enlighten the development of potential strategies to eradicate HIV-1 using a combination of targeted drugs.


Asunto(s)
VIH-1 , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , VIH-1/genética , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteómica , Chaperonas Moleculares/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Transcripción Genética
2.
Bioorg Med Chem Lett ; 47: 128168, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34091041

RESUMEN

A series of unique macrocyclic HDACs 1, 2, and 3 selective inhibitors were identified with good enzymatic activity and high selectivity over HDACs 6 and 8. These macrocyclic HDAC inhibitors used an ethyl ketone as the zinc-binding group. Compounds 25 and 26 stood out as leads due to their low double-digit nM EC50s in the 2C4 cell-based HIV latency reactivation assay. The PK profiles of these macrocyclic HDAC inhibitors still needed improvement.


Asunto(s)
Fármacos Anti-VIH/farmacología , Descubrimiento de Drogas , VIH/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Relación Dosis-Respuesta a Droga , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
3.
Bioeng Transl Med ; 8(5): e10551, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693052

RESUMEN

A promising strategy to cure HIV-infected individuals is to use latency reversing agents (LRAs) to reactivate latent viruses, followed by host clearance of infected reservoir cells. However, reactivation of latent proviruses within infected cells is heterogeneous and often incomplete. This fact limits strategies to cure HIV which may require complete elimination of viable virus from all cellular reservoirs. For this reason, understanding the mechanism(s) of reactivation of HIV within cellular reservoirs is critical to achieve therapeutic success. Methodologies enabling temporal tracking of single cells as they reactivate followed by sorting and molecular analysis of those cells are urgently needed. To this end, microraft arrays were adapted to image T-lymphocytes expressing mCherry under the control of the HIV long terminal repeat (LTR) promoter, in response to the application of LRAs (prostratin, iBET151, and SAHA). In response to prostratin, iBET151, and SAHA, 30.5%, 11.2%, and 12.1% percentage of cells, respectively. The arrays enabled large numbers of single cells (>25,000) to be imaged over time. mCherry fluorescence quantification identified cell subpopulations with differing reactivation kinetics. Significant heterogeneity was observed at the single-cell level between different LRAs in terms of time to reactivation, rate of mCherry fluorescence increase upon reactivation, and peak fluorescence attained. In response to prostratin, subpopulations of T lymphocytes with slow and fast reactivation kinetics were identified. Single T-lymphocytes that were either fast or slow reactivators were sorted, and single-cell RNA-sequencing was performed. Different genes associated with inflammation, immune activation, and cellular and viral transcription factors were found.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA