Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105699, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301891

RESUMEN

DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.


Asunto(s)
Queratinas , Lectinas Tipo C , Modelos Moleculares , Humanos , Células Dendríticas/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligandos , Receptor de Manosa/química , Mutagénesis , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Dominios y Motivos de Interacción de Proteínas , Cristalografía por Rayos X
2.
Semin Cell Dev Biol ; 128: 80-89, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34654627

RESUMEN

Keratins are one of the major components of cytoskeletal network and assemble into fibrous structures named intermediate filaments (IFs), which are important for maintaining the mechanical properties of cells and tissues. Over the past decades, evidence has shown that the functions of keratins go beyond providing mechanical support for cells, they interact with multiple cellular components and are widely involved in the pathways of cell proliferation, differentiation, motility and death. However, the structural details of keratins and IFs are largely missing and many questions remain regarding the mechanisms of keratin assembly and recognition. Here we briefly review the current structural models and assembly of keratins as well as the interactions of keratins with the binding partners, which may provide a structural view for understanding the mechanisms of keratins in the biological activities and the related diseases.


Asunto(s)
Filamentos Intermedios , Queratinas , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Queratinas/análisis , Queratinas/química , Queratinas/genética
3.
Semin Cell Dev Biol ; 128: 120-129, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35131152

RESUMEN

Hidradenitis suppurativa (HS) is characterized by deep-seated, highly inflamed, and painful lumps/abscesses, fistulae, and sinus tracts that grow extensively deep in the dermis and are highly immunogenic in nature. In about one-third of the HS patients there is strong evidence for the role of γ-secretase mutations along with dysregulated Notch signaling. However, the contribution of dysregulated Notch signaling in HS pathogenesis in relation to hair follicle alterations and hyper-activation of the immune system remains undefined. A genome-wide association study (GWAS), proteomic data and functional investigations of identified sequence variants in HS pathology are not fully revealing. The disease initiation or progression may involve bacterial infection besides intrinsic functional defects in keratinocytes, which may be key to further exacerbate immune cell infiltration and cytokine production in and around the lesional tissue. The absence of a suitable animal model that could fully recapitulate the pathogenesis of HS is a major impediment for proper understanding the underlying mechanisms and development of effective treatments. The presence of extracellular matrix (ECM) degradation products along with dysregulation in keratinocytes and, dermal fibroblasts ultimately affect immune regulation and are various components of HS pathogenesis. Bacterial infection further exacerbates the complexity of the disease progression. While anti-TNFα therapy shows partial efficacy, treatment to cure HS is absent. Multiple clinical trials targeting various cytokines, complement C5a and ECM products are in progress. This review provides state-of-the-art information on these aspects with a focus on dysregulated keratinocyte and immune cells; and role of ECM, and Keratin functions in this regard.


Asunto(s)
Hidradenitis Supurativa , Animales , Proteínas del Citoesqueleto/metabolismo , Estudio de Asociación del Genoma Completo , Hidradenitis Supurativa/genética , Hidradenitis Supurativa/patología , Humanos , Queratinas/genética , Queratinas/metabolismo , Proteómica , Transducción de Señal/genética
4.
J Proteome Res ; 23(9): 3890-3903, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39115235

RESUMEN

Archaeological textiles represent precious remains from ancient culture; this is because of the historical and cultural importance of the information that can be obtained by such relics. However, the extremely complicated state of preservation of these textiles, which can be charred, partially or totally mineralized, with heavy soil or biological contamination, requires highly specialized and sensitive analytical tools to perform a comprehensive study. Starting from these considerations, the paper presents a combined workflow that provides the extraction of dyes and keratins and keratin-associated proteins in a single step, minimizing sampling while maximizing the amount of information gained. In the first phase, different approaches were tested and two different protocols were found suitable for the purpose of the unique workflow for dyes/keratin-proteins: a slightly modified urea protocol and a recently proposed new TCEP/CAA procedure. In the second step, after the extraction, different methods of cleanup and workflow for proteins and dyes were investigated to develop protocols that did not result in a loss of aliquots of the analytes of interest and to maximize the recovery of both components from the extracting solution. These protocols investigated the application of two types of paramagnetic beads, unmodified and carboxylate-coated hydrophilic magnetic beads, and dialysis and stage-tip protocols. The newly designed protocols have been applied to cochineal, weld, orchil, kermes, and indigo keratin-based dyed samples to evaluate the effectiveness of the protocols on several dye sources. These protocols, based on a single extraction step, show the possibility of investigating dyes and keratins from a unique sample of 1 mg or lesser, with respect to the thresholds of sensitivity and accuracy required in the study of textile artifacts of historical and artistic values.


Asunto(s)
Colorantes , Queratinas , Textiles , Queratinas/química , Queratinas/aislamiento & purificación , Textiles/análisis , Colorantes/química , Colorantes/análisis , Urea/química
5.
Curr Issues Mol Biol ; 46(8): 8627-8641, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39194725

RESUMEN

Keratins 6, 16, and 17 occupy unique positions within the keratin family. These proteins are not commonly found in the healthy, intact epidermis, but their expression increases in response to damage, inflammation, and hereditary skin conditions, as well as cancerous cell transformations and tumor growth. As a result, there is an active investigation into the potential use of these proteins as biomarkers for different pathologies. Recent studies have revealed the role of these keratins in regulating keratinocyte migration, proliferation, and growth, and more recently, their nuclear functions, including their role in maintaining nuclear structure and responding to DNA damage, have also been identified. This review aims to summarize the latest research on keratins 6, 16, and 17, their regulation in the epidermis, and their potential use as biomarkers in various skin conditions.

6.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G438-G453, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860856

RESUMEN

Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding, and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8-/-) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation, and blunted mitochondrial ketogenesis, the role of K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8-/- colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8-/- colonocyte mitochondria in vivo are smaller and rounder and that mitochondrial motility is increased in K8-/- Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared with controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8-/- Caco-2 cells and in vivo in K8-/- mouse colonocytes, and reexpression of K8 into K8-/- Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.NEW & NOTEWORTHY In this study, we show that colonocyte intermediate filament protein keratin 8 is important for stabilizing mitochondria and maintaining mitochondrial energy metabolism, as keratin 8-deficient colonocytes display smaller, rounder, and more motile mitochondria, diminished mitochondrial respiration, and altered Ca2+ dynamics. Changes in fusion-regulating proteins are rescued with reexpression of keratin 8. These alterations in colonocyte mitochondrial homeostasis contribute to keratin 8-associated colitis pathophysiology.


Asunto(s)
Colon , Metabolismo Energético , Queratina-8 , Ratones Noqueados , Mitocondrias , Animales , Mitocondrias/metabolismo , Células CACO-2 , Humanos , Queratina-8/metabolismo , Queratina-8/genética , Colon/metabolismo , Ratones , Prohibitinas , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Enterocitos/metabolismo , Potencial de la Membrana Mitocondrial , Proteínas Represoras/metabolismo , Proteínas Represoras/genética
7.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339083

RESUMEN

Keratins are the main components of the cell cytoskeleton of epithelial cells. Epithelial cells under stressful stimuli react by modifying their keratin expression pattern. Glomerular diseases are pathological conditions that may lead to loss of kidney function if not timely diagnosed and treated properly. This study aims to examine glomerular and tubular keratin expression in podocytopathies, ANCA-associated vasculitis, and IgA nephropathy and how this expression correlates to clinical outcomes. We included 45 patients with podocytopathies (minimal change disease and focal segmental glomerulosclerosis), ANCA-associated vasculitis, and IgA nephropathy, with or without crescentic lesions, and healthy controls. All tissues were assessed by photon microscopy and immunohistochemistry. Biopsy sections were examined for keratins 7, 8, 18, and 19 expression in the glomerular and tubulointerstitial areas separately. Moreover, we examined how keratin expression was correlated with long-term kidney function outcomes. All four studied keratins had significantly increased glomerular expression in patients with ANCA vasculitis compared to controls and MCD patients. Tubular expression of keratins 7, 8, and 19 was related to kidney outcome in all groups. Patients with crescents had higher expression of all keratins in both glomeruli and tubulointerstitium. The presence of tubular atrophy, interstitial fibrosis, mesangial hyperplasia, and interstitial inflammation did not affect keratin expression. Keratins, an abundant component of renal epithelial cells, have the potential to be featured as a biomarker for kidney function prognosis in patients with glomerular diseases.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Glomerulonefritis por IGA , Humanos , Glomerulonefritis por IGA/patología , Queratinas , Riñón/metabolismo , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/patología , Citoesqueleto/metabolismo
8.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892168

RESUMEN

Pinin (PNN) is a desmosome-associated protein that reinforces the organization of keratin intermediate filaments and stabilizes the anchoring of the cytoskeleton network to the lateral surface of the plasma membrane. The aberrant expression of PNN affects the strength of cell adhesion as well as modifies the intracellular signal transduction pathways leading to the onset of CRC. In our previous studies, we characterized the role of miR-195-5p in the regulation of desmosome junctions and in CRC progression. Here, with the aim of investigating additional mechanisms related to the desmosome complex, we identified PNN as a miR-195-5p putative target. Using a public data repository, we found that PNN was a negative prognostic factor and was overexpressed in colon cancer tissues from stage 1 of the disease. Then, we assessed PNN expression in CRC tissue specimens, confirming the overexpression of PNN in tumor sections. The increase in intracellular levels of miR-195-5p revealed a significant decrease in PNN at the mRNA and protein levels. As a consequence of PNN regulation by miR-195-5p, the expression of KRT8 and KRT19, closely connected to PNN, was affected. Finally, we investigated the in vivo effect of miR-195-5p on PNN expression in the colon of AOM/DSS-treated mice. In conclusion, we have revealed a new mechanism driven by miR-195-5p in the regulation of desmosome components, suggesting a potential pharmacological target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , MicroARNs , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , MicroARNs/genética , MicroARNs/metabolismo
9.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892279

RESUMEN

Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) are transcriptional targets of GLI Family Zinc Finger (GLI) proteins. Besides their important role in protecting and maintaining the epidermal barrier, keratins are somehow tightly connected with the S100 family of proteins. We found that stronger expression of KRT16 indeed corresponds to stronger expression of S100A7 in our clinical melanoma samples. We also report a trend regarding staining of GLI1, which corresponds to stronger staining of GLI3, KRT16, and S100A7 proteins. The most interesting of our findings is that all the proteins are detected specifically in the epidermis overlying the tumor, but rarely in the tumor itself. The examined proteins were also not detected in the healthy epidermis at the edges of the sample, suggesting that the staining is specific to the epidermis overlaying the tumor mass. Of all proteins, only S100A7 demonstrated a statistically significant trend regarding tumor staging and staining intensity. Results from our clinical samples prove that immune infiltration is an important feature of melanoma. Pigmentophages and tumor-infiltrating lymphocytes (TIL) demonstrate a significant association with tumor stage, while mononuclear cells are equally present in all stages. For S100A7, we found an association between the number of TILs and staining intensity. Considering these new findings presented in our study, we suggest a more detailed examination of the possible role of the S100A7 protein as a biomarker in melanoma.


Asunto(s)
Epidermis , Regulación Neoplásica de la Expresión Génica , Queratina-16 , Melanoma , Proteína A7 de Unión a Calcio de la Familia S100 , Neoplasias Cutáneas , Proteína con Dedos de Zinc GLI1 , Humanos , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Proteína A7 de Unión a Calcio de la Familia S100/metabolismo , Proteína A7 de Unión a Calcio de la Familia S100/genética , Epidermis/metabolismo , Epidermis/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Línea Celular Tumoral , Queratina-16/metabolismo , Queratina-16/genética , Regulación hacia Arriba , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Anciano
10.
Dev Biol ; 491: 1-12, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049534

RESUMEN

Mammalian corneal development is a multistep process, including formation of the corneal epithelium (CE), endothelium and stroma during embryogenesis, followed by postnatal stratification of the epithelial layers and continuous renewal of the epithelium to replace the outermost corneal cells. Here, we employed the Cre-loxP system to conditionally deplete Pax6 proteins in two domains of ocular cells, i.e., the ocular surface epithelium (cornea, limbus and conjunctiva) (OSE) or postnatal CE via K14-cre or Aldh3-cre, respectively. Earlier and broader inactivation of Pax6 in the OSE resulted in thickened OSE with CE and limbal cells adopting the conjunctival keratin expression pattern. More restricted depletion of Pax6 in postnatal CE resulted in an abnormal cornea marked by reduced epithelial thickness despite increased epithelial cell proliferation. Immunofluorescence studies revealed loss of intermediate filament Cytokeratin 12 and diffused expression of adherens junction components, together with reduced tight junction protein, Zonula occludens-1. Furthermore, the expression of Cytokeratin 14, a basal cell marker in apical layers, indicates impaired differentiation of CE cells. Collectively, our data demonstrate that Pax6 is essential for maintaining proper differentiation and strong intercellular adhesion in postnatal CE cells, whereas limbal Pax6 is required to prevent the outgrowth of conjunctival cells to the cornea.


Asunto(s)
Córnea , Epitelio Corneal , Animales , Córnea/metabolismo , Epitelio Corneal/metabolismo , Queratina-12/metabolismo , Queratina-14/metabolismo , Queratinas/metabolismo , Mamíferos/metabolismo , Proteínas de Uniones Estrechas/metabolismo
11.
Fish Shellfish Immunol ; 139: 108900, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315911

RESUMEN

Bacterial intestinal inflammation occurs frequently in cultured fish. However, research on the dysfunction of the intestinal physical barrier in fish intestinal inflammation is scarce. In this study, intestinal inflammation in tongue sole Cynoglossus semilaevis was induced by Shewanella algae and the intestinal permeability was investigated. Gene expression patterns in inflammatory factors, tight junction molecules, and keratins 8 and 18 in the intestines were further explored. Histological examinations of the middle intestines showed that S. algae induced pathological lesions of intestinal inflammation and significantly increased the total number of mucous cells (p < 0.01). Ultrastructural observation in the middle intestines showed that intercellular spaces between epithelial cells were significantly wider in infected fish compared with the control (p < 0.01). The positive result of fluorescence in situ hybridization confirmed the presence of S. algae in the intestine. Enhanced Evans blue exudation and increased levels of serum d-lactate and intestinal fatty acid binding protein were suggestive of increased intestinal barrier permeability. The mRNA levels of four pro-inflammatory cytokines, namely IL-6, IL-8, IL-ß, and TNF-α, were significantly increased after S. algae infection at most tested time points (p < 0.01 or p < 0.05), while there was an alternating increasing and decreasing trend in the gene expression patterns of IL-10, TGF-ß, TLR-2, AP-1, and CASP-1. The mRNA expression of tight junction molecules (claudin-1, claudin-2, ZO-1, JAM-A, and MarvelD3) and keratins 8 and 18 in the intestines was significantly decreased at 6, 12, 24, 48, or 72 h post infection (p < 0.01 or p < 0.05). In conclusion, S. algae infection induced intestinal inflammation accompanied by increased intestinal permeability in tongue sole, and tight junction molecules and keratins were probably associated with the pathological process.


Asunto(s)
Intestinos , Uniones Estrechas , Animales , Hibridación Fluorescente in Situ , Uniones Estrechas/metabolismo , Inflamación/metabolismo , ARN Mensajero/metabolismo , Mucosa Intestinal/metabolismo
12.
Cell Mol Life Sci ; 79(5): 223, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35380280

RESUMEN

Desmosomes are intercellular junctions which mediate cohesion and communication in tissues exposed to mechanical strain by tethering the intermediate filament cytoskeleton to the plasma membrane. While mature desmosomes are characterized by a hyperadhesive, Ca2+-independent state, they transiently loose this state during wound healing, pathogenesis and tissue regeneration. The mechanisms controlling the hyperadhesive state remain incompletely understood. Here, we show that upon Ca2+-induced keratinocyte differentiation, expression of keratin 17 (K17) prevents the formation of stable and hyperadhesive desmosomes, accompanied by a significant reduction of desmoplakin (DP), plakophilin-1 (PKP1), desmoglein-1 (Dsg1) and -3 (Dsg3) at intercellular cell borders. Atomic force microscopy revealed that both increased binding strength of desmoglein-3 molecules and amount of desmoglein-3 oligomers, known hallmarks of hyperadhesion, were reduced in K17- compared to K14-expressing cells. Importantly, overexpression of Dsg3 or DPII enhanced their localization at intercellular cell borders and increased the formation of Dsg3 oligomers, resulting in stable, hyperadhesive desmosomes despite the presence of K17. Notably, PKP1 was enriched in these desmosomes. Quantitative image analysis revealed that DPII overexpression contributed to desmosome hyperadhesion by increasing the abundance of K5/K17-positive keratin filaments in the proximity of desmosomes enriched in desmoglein-3. Thus, our data show that hyperadhesion can result from recruitment of keratin isotypes K5/K17 to desmosomes or from enhanced expression of DP and Dsg3 irrespective of keratin composition. The notion that hyperadhesive desmosomes failed to form in the absence of keratins underscores the essential role of keratins and suggest bidirectional control mechanisms at several levels.


Asunto(s)
Desmosomas , Queratinas , Adhesión Celular , Citoesqueleto/metabolismo , Desmogleínas/metabolismo , Desmosomas/metabolismo , Queratinocitos/metabolismo , Queratinas/metabolismo
13.
Graefes Arch Clin Exp Ophthalmol ; 261(12): 3549-3558, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37389637

RESUMEN

PURPOSE: To investigate the differentially expressed proteins (DEP) between high myopia and moderate myopia on the anterior corneal stroma. METHODS: Tandem mass tag (TMT) quantitative proteomics was utilized to reveal proteins. DEPs were screened by the multiple change of more than 1.2 times or less than 0.83 and the P value < 0.05. The DEPs were functional annotated by Gene Ontology (GO) terms. Proteins and protein interaction (PPI) networks were conducted with String online tool. Parallel reaction monitoring (PRM) data processing was used to verify the TMT proteomics results. RESULTS: There are 36 DEPs between high myopia and moderate myopia on the anterior corneal stroma, of which 11 proteins are upregulated, 25 proteins are downregulated. The GO analysis demonstrated keratinocyte migration and structural constituent of cytoskeleton that are significantly changed with most of the proteins decreased in high myopic corneas. Keratin 16 (KRT16) and erythrocyte membrane protein band 4.1-like protein 4B are the only two proteins involved in both functions. The PPI analysis showed keratin type II cytoskeletal 6A (KRT6A) and KRT16 that have strong connections. Immunoglobulin lambda variable 8-61(IGLV8-61) and nicotinamide phosphoribosyl transferase (NAMPT) have consistent results with the TMT. CONCLUSIONS: The high myopic corneas have 36 DEPs compared to the moderate myopic corneas on the anterior corneal stroma. Keratinocyte migrations and structural constituent of cytoskeleton are weakened in high myopic corneas, which may partly account for the lower corneal biomechanics in high myopic eyes. The lower expressed KRT16 plays important roles in high myopic corneas.


Asunto(s)
Sustancia Propia , Miopía , Humanos , Córnea
14.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298186

RESUMEN

Ceramides are epidermal lipids important for normal skin barrier function. Reduced Ceramide content is associated with atopic dermatitis (AD). House dust mite (HDM) has been localized in AD skin where it plays an exacerbator role. We set to examine the impact of HDM on skin integrity and the effect of three separate Ceramides (AD™, DS, Y30) on HDM-induced cutaneous damage. The effect was tested in vitro on primary human keratinocytes and ex vivo on skin explants. HDM (100 µg/mL) decreased the expression of adhesion protein E-cadherin, supra-basal (K1, K10) and basal (K5, K14) keratins and increased matrix metallopeptidase (MMP)-9 activity. The presence of Ceramide AD™ in topical cream inhibited HDM-induced E-cadherin and keratin destruction and dampened MMP-9 activity ex vivo which was not seen for the control cream or cream containing DS or Y30 Ceramides. The efficacy of Ceramide AD™ was tested in a clinical setting on moderate to very dry skin (as surrogate for environment-induced skin damage). When applied topically for 21 days, Ceramide AD™ significantly reduced transepidermal water loss (TEWL) in patients with very dry skin compared to their TEWL baseline data. Our study demonstrates Ceramide AD™ cream to be effective in restoring skin homeostasis and barrier function in damaged skin and warrants testing in larger clinical trials for possible treatment of AD and xerosis.


Asunto(s)
Ceramidas , Dermatitis Atópica , Animales , Humanos , Ceramidas/farmacología , Pyroglyphidae , Piel/metabolismo , Dermatitis Atópica/metabolismo , Epidermis/metabolismo , Dermatophagoides pteronyssinus , Queratinas/farmacología , Emolientes/farmacología
15.
Br Poult Sci ; 64(1): 100-109, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36069156

RESUMEN

1. The objective of this study was to examine the keratin composition of crop milk, the variation of epithelial thickness and keratin (K) gene expression in samples from young pigeon during incubation and chick rearing.2. Crop milk was collected from 1-, 3- and 5-day-old squab crops for keratin content analysis. Results showed that K4 accounted for the highest proportion of all detected keratins.3. In total, 42 pairs of adult pigeons were allocated to seven groups according to different stages to collect crop samples. Gene expression studies showed that the K3 gene expression was maximised at rearing Day 15 (15) and R1 in males and females, respectively. K6a gene level was the greatest at R15 in females, whereas it peaked at incubation Day 4 (I4) in males. The K12, K13, K23 and K80 gene levels were inhibited at the peak period of crop milk formation in comparison with I4. In females, K cochleal expression peaked at I10, whereas it was the greatest at R25 in males. K4 and K14 gene expression was the highest at I10 in females, while K4 and K14 were minimised at I17 and R7 in males, respectively. Gene expressions of K5, K8, K19 and K20 in males and K19 in females were maximised at R1. The K5, K20 and K75 gene levels in females peaked at R7. K75 and K8 expressions in males and females reached a maximum value at R25 and I17, respectively.4. The epithelial thickness of male and female crops reached their greatest levels at R1 and had the highest correlation with K19.5. These results emphasised the importance of keratinisation in crop milk formation, and different keratins probably play various roles during this period. The K19 was probably a marker for pigeon crop epithelium development. The sex of the parent pigeon affected keratin gene expression profiles.


Asunto(s)
Columbidae , Queratinas , Masculino , Femenino , Animales , Queratinas/genética , Queratinas/análisis , Columbidae/genética , Leche/química , Pollos/genética , Expresión Génica
16.
J Cell Sci ; 133(14)2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32616561

RESUMEN

Keratin intermediate filament (IF) proteins constitute the major cytoskeletal components in epithelial cells. Missense mutations in keratin 5 (K5; also known as KRT5) or keratin 14 (K14; also known as KRT14), highly expressed in the basal epidermis, cause the severe skin blistering disease epidermolysis bullosa simplex (EBS). EBS-associated mutations disrupt keratin networks and change keratinocyte mechanics; however, molecular mechanisms by which mutations shape EBS pathology remain incompletely understood. Here, we demonstrate that, in contrast to keratin-deficient keratinocytes, cells expressing K14R125C, a mutation that causes severe EBS, generate lower traction forces, accompanied by immature focal adhesions with an altered cellular distribution. Furthermore, mutant keratinocytes display reduced directionality during collective migration. Notably, RhoA activity is downregulated in human EBS keratinocytes, and Rho activation rescues stiffness-dependent cell-extracellular matrix (ECM) adhesion formation of EBS keratinocytes. Collectively, our results strongly suggest that intact keratin IF networks regulate mechanotransduction through a Rho signaling pathway upstream of cell-ECM adhesion formation and organized cell migration. Our findings provide insights into the underlying pathophysiology of EBS.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Epidermólisis Ampollosa Simple , Queratinas , Citoesqueleto/metabolismo , Epidermólisis Ampollosa Simple/genética , Humanos , Queratinas/genética , Queratinas/metabolismo , Mecanotransducción Celular , Mutación/genética , Tracción
17.
Development ; 146(20)2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31558434

RESUMEN

The upper airway epithelium, which is mainly composed of multiciliated, goblet, club and basal cells, ensures proper mucociliary function and can regenerate in response to assaults. In chronic airway diseases, defective repair leads to tissue remodeling. Delineating key drivers of differentiation dynamics can help understand how normal or pathological regeneration occurs. Using single-cell transcriptomics and lineage inference, we have unraveled trajectories from basal to luminal cells, providing novel markers for specific populations. We report that: (1) a precursor subgroup of multiciliated cells, which we have entitled deuterosomal cells, is defined by specific markers, such as DEUP1, FOXN4, YPEL1, HES6 and CDC20B; (2) goblet cells can be precursors of multiciliated cells, thus explaining the presence of hybrid cells that co-express markers of goblet and multiciliated cells; and (3) a repertoire of molecules involved in the regeneration process, such as keratins or components of the Notch, Wnt or BMP/TGFß pathways, can be identified. Confirmation of our results on fresh human and pig airway samples, and on mouse tracheal cells, extend and confirm our conclusions regarding the molecular and cellular choreography at work during mucociliary epithelial differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Células Epiteliales/citología , Células Caliciformes/citología , Mucosa Respiratoria/citología , Animales , Diferenciación Celular/genética , Células Cultivadas , Células Epiteliales/metabolismo , Células Caliciformes/metabolismo , Humanos , Ratones , RNA-Seq , Mucosa Respiratoria/metabolismo , Porcinos , Tráquea/citología , Tráquea/metabolismo
18.
Biol Chem ; 403(8-9): 869-890, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34450690

RESUMEN

To improve management of head and neck squamous cell carcinoma patients, we need to increase our understanding of carcinogenesis, to identify biomarkers, and drug targets. This study aimed to identify novel biomarkers by providing transcriptomics profiles of matched primary tumors, lymph node metastasis, and non-malignant tissue of 20 HNSCC patients as well as by bioinformatic analyses of a TCGA HNSCC cohort, comprising 554 patients. We provide cancer cell signaling networks differentially expressed in tumors versus metastases, such as mesenchymal-epithelial transition, and structural integrity networks. As a proof of principle study, we exploited the data sets and performed functional analyses of a novel cytokeratin, cytokeratin24 (cKRT24), which had not been described as biomarker for tumors before. Survival analysis revealed that low cKRT24 expression correlated with poor overall survival in HNSCC. Experimentally, downregulation of cKRT24 in primary tumors, metastases, and HNSCC cell lines was verified on mRNA and protein level. Cloning and ectopic overexpression of cKRT24 not only affected viability and growth of HNSSC cell lines, but also inhibited tumor growth in murine xenograft studies. We conclude that cKRT24 functions as a tumor suppressor in HNSCC, and may serve as an additional prognostic biomarker and novel target to support current HNSCC treatments.


Asunto(s)
Genes Supresores de Tumor , Neoplasias de Cabeza y Cuello , Queratinas Tipo I , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Queratinas Tipo I/genética , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
19.
J Am Acad Dermatol ; 86(3): 551-562, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34044102

RESUMEN

BACKGROUND: Frontal fibrosing alopecia (FFA) is a progressive, scarring alopecia of the frontotemporal scalp that poses a substantial burden on quality of life. Large-scale global profiling of FFA is lacking, preventing the development of effective therapeutics. OBJECTIVE: To characterize FFA compared to normal and alopecia areata using broad molecular profiling and to identify biomarkers linked to disease severity. METHODS: This cross-sectional study assessed 33,118 genes in scalp using RNA sequencing and 350 proteins in serum using OLINK high-throughput proteomics. Disease biomarkers were also correlated with clinical severity and a fibrosis gene set. RESULTS: Genes differentially expressed in lesional FFA included markers related to Th1 (IFNγ/CXCL9/CXCL10), T-cell activation (CD2/CD3/CCL19/ICOS), fibrosis (CXCR3/FGF14/FGF22/VIM/FN1), T-regulatory (FOXP3/TGFB1/TGFB3), and Janus kinase/JAK (JAK3/STAT1/STAT4) (Fold changes [FCH]>1.5, FDR<.05 for all). Only one protein, ADM, was differentially expressed in FFA serum compared to normal (FCH>1.3, FDR<.05). Significant correlations were found between scalp biomarkers (IL-36RN/IL-25) and FFA severity, as well as between JAK/STAT and fibrosis gene-sets (r>.6; P <.05). LIMITATIONS: This study was limited by a small sample size and predominantly female FFA patients. CONCLUSION: Our data characterize FFA as an inflammatory condition limited to scalp, involving Th1/JAK skewing, with associated fibrosis and elevated T-regulatory markers, suggesting the potential for disease reversibility with JAK/STAT inhibition.


Asunto(s)
Alopecia Areata , Liquen Plano , Alopecia/genética , Alopecia/patología , Biomarcadores/metabolismo , Estudios Transversales , Femenino , Fibrosis , Humanos , Liquen Plano/patología , Calidad de Vida , Cuero Cabelludo/patología
20.
Int J Mol Sci ; 23(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35628310

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a detrimental premature aging disease caused by a point mutation in the human LMNA gene. This mutation results in the abnormal accumulation of a truncated pre-lamin A protein called progerin. Among the drastically accelerated signs of aging in HGPS patients, severe skin phenotypes such as alopecia and sclerotic skins always develop with the disease progression. Here, we studied the HGPS molecular mechanisms focusing on early skin development by differentiating patient-derived induced pluripotent stem cells (iPSCs) to a keratinocyte lineage. Interestingly, HGPS iPSCs showed an accelerated commitment to the keratinocyte lineage than the normal control. To study potential signaling pathways that accelerated skin development in HGPS, we investigated the WNT pathway components during HGPS iPSCs-keratinocytes induction. Surprisingly, despite the unaffected ß-catenin activity, the expression of a critical WNT transcription factor LEF1 was diminished from an early stage in HGPS iPSCs-keratinocytes differentiation. A chromatin immunoprecipitation (ChIP) experiment further revealed strong bindings of LEF1 to the early-stage epithelial developmental markers K8 and K18 and that the LEF1 silencing by siRNA down-regulates the K8/K18 transcription. During the iPSCs-keratinocytes differentiation, correction of HGPS mutation by Adenine base editing (ABE), while in a partial level, rescued the phenotypes for accelerated keratinocyte lineage-commitment. ABE also reduced the cell death in HGPS iPSCs-derived keratinocytes. These findings brought new insight into the molecular basis and therapeutic application for the skin abnormalities in HGPS.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factor de Unión 1 al Potenciador Linfoide , Progeria , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Progeria/genética , Progeria/metabolismo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA