Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; 20(31): e2400107, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461525

RESUMEN

Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.

2.
Small ; 19(44): e2305234, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37394705

RESUMEN

The metal-insulator transition (MIT) of vanadium dioxide (VO2 ) has been of great interest in materials science for both fundamental understanding of strongly correlated physics and a wide range of applications in optics, thermotics, spintronics, and electronics. Due to the merits of chemical interaction with accessibility, versatility, and tunability, chemical modification provides a new perspective to regulate the MIT of VO2 , endowing VO2 with exciting properties and improved functionalities. In the past few years, plenty of efforts have been devoted to exploring innovative chemical approaches for the synthesis and MIT modulation of VO2 nanostructures, greatly contributing to the understanding of electronic correlations and development of MIT-driven functionalities. Here, this comprehensive review summarizes the recent achievements in chemical synthesis of VO2 and its MIT modulation involving hydrogen incorporation, composition engineering, surface modification, and electrochemical gating. The newly appearing phenomena, mechanism of electronic correlation, and structural instability are discussed. Furthermore, progresses related to MIT-driven applications are presented, such as the smart window, optoelectronic detector, thermal microactuator, thermal radiation coating, spintronic device, memristive, and neuromorphic device. Finally, the challenges and prospects in future research of chemical modulation and functional applications of VO2 MIT are also provided.

3.
Small ; 19(42): e2302764, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37330653

RESUMEN

Here, a rational strategy to achieve multifunctional N, S codoped carbon dots (N, S-CDs) is reported, aiming to improve the photoluminescence quantum yields (PLQYs) of the CDs. The synthesized N, S-CDs have excellent stability and emission properties independent of excitation wavelength. Through the introduction of S element doping, the fluorescence emission of CDs is red-shifted from 430 to 545 nm, and the corresponding PLQYs can be greatly enhanced from 11.2% to 65.1%. It is found that the doping of S elements causes an increase in the size of CDs and an elevated graphite N content, which may be the key factors to cause the redshift of fluorescence emission. Furthermore, the introduction of S element also serves to suppress the nonradiative transitions, which may be responsible for the elevated PLQYs. Besides, the synthesized N, S-CDs have certain solvent effect and can be applied to detect water content in organic solvents, and have strong sensitivity to alkaline environment. More importantly, the N, S-CDs can be used to achieve an "on-off-on" dual detection mode between Zr4+ and NO2 - . In addition, N, S-CDs combinedwith polyvinylpyrrolidone (PVP) can also be utilized as fluorescent inks for anti-counterfeiting applications.

4.
Small ; 19(24): e2300234, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919815

RESUMEN

Simultaneously achieving exceptional mechanical strength and resilience of graphene aerogel (GA) remains a challenge, while GA is an ideal candidate for formaldehyde removal. Herein, flexible polyethyleneimine (PEI) is grafted chemically onto carbon nanotube (CNT) surface, and CNT-PEI@reduced GA (rGA) is fabricated via hydrothermal self-assembly, pre-frozen, and hydrazine reduction process. Introducing CNT-PEI contributes to well-interconnected/robust 3D network construction by connecting reduced graphene oxide (rGO) nanosheets through enhancing cross-linking, while entangled CNT-PEI is intercalated into rGO layers to avoid serious restacking of sheets, producing larger surface area and more formaldehyde adsorption sites. Ultralight CNT-PEI@rGA exhibits extreme high strength (276.37 kPa), reversible compressibility at 90% strain, and structural stability, while FA adsorption capacity reached 568.41 mg g-1 , ≈3.28 times of rGA, derivable from synergistic chemical-physical adsorption effect. Furthermore, CNT-PEI@rGA is ground into powder for first preparing polyoxymethylene (POM)/CNT-PEI@rGA composite, while formaldehyde emission amount is 69.63%/73.96% lower than that of POM at 60/230 °C. Moreover, CNT-PEI@rGA presents outstanding piezoresistive-sensing and thermal insulation properties, exhibiting high strain sensitivity, wide strain detection range, and long-term durability.

5.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982937

RESUMEN

In the study, monodispersed silver nanoparticles (AgNPs) with an average diameter of 9.57 nm were efficiently and controllably biosynthesized by a reductase from Fusarium solani DO7 only in the presence of ß-NADPH and polyvinyl pyrrolidone (PVP). The reductase responsible for AgNP formation in F. solani DO7 was further confirmed as 1,4-α-glucosidase. Meanwhile, based on the debate on the antibacterial mechanism of AgNPs, this study elucidated in further depth that antibacterial action of AgNPs was achieved by absorbing to the cell membrane and destabilizing the membrane, leading to cell death. Moreover, AgNPs could accelerate the catalytic reaction of 4-nitroaniline, and 86.9% of 4-nitroaniline was converted to p-phenylene diamine in only 20 min by AgNPs of controllable size and morphology. Our study highlights a simple, green, and cost-effective process for biosynthesizing AgNPs with uniform sizes and excellent antibacterial activity and catalytic reduction of 4-nitroaniline.


Asunto(s)
Fusarium , Nanopartículas del Metal , Plata/metabolismo , alfa-Glucosidasas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Fusarium/metabolismo
6.
Molecules ; 28(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37175245

RESUMEN

As a new generation of green media and functional materials, ionic liquids (ILs) have been extensively investigated in scientific and industrial communities, which have found numerous ap-plications in polymeric materials. On the one hand, much of the research has determined that ILs can be applied to modify polymers which use nanofillers such as carbon black, silica, graphene oxide, multi-walled carbon nanotubes, etc., toward the fabrication of high-performance polymer composites. On the other hand, ILs were extensively reported to be utilized to fabricate polymeric materials with improved thermal stability, thermal and electrical conductivity, etc. Despite substantial progress in these areas, summary and discussion of state-of-the-art functionalities and underlying mechanisms of ILs are still inadequate. In this review, a comprehensive introduction of various fillers modified by ILs precedes a systematic summary of the multifunctional applications of ILs in polymeric materials, emphasizing the effect on vulcanization, thermal stability, electrical and thermal conductivity, selective permeability, electromagnetic shielding, piezoresistive sensitivity and electrochemical activity. Overall, this review in this area is intended to provide a fundamental understanding of ILs within a polymer context based on advantages and disadvantages, to help researchers expand ideas on the promising applications of ILs in polymer fabrication with enormous potential.

7.
Macromol Rapid Commun ; 43(17): e2200250, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35524950

RESUMEN

2D polymer nanonets have demonstrated great potential in various application fields due to their integrated advantages of ultrafine diameter, small pore size, high porosity, excellent interconnectivity, and large specific surface area. Here, a comprehensive overview of the controlled constructions of the polymer nanonets derived from electrospinning/netting, direct electronetting, self-assembly of cellulose nanofibers, and nonsolvent-induced phase separation is provided. Then, the widely researched multifunctional applications of polymer nanonets in filtration, sensor, tissue engineering, and electricity are also given. Finally, the challenges and possible directions for further developing the polymer nanonets are also intensively highlighted.


Asunto(s)
Nanofibras , Polímeros , Celulosa , Porosidad , Ingeniería de Tejidos
8.
Environ Res ; 203: 111858, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34389352

RESUMEN

Copper oxide nanoparticles (CuO NPs) are one of the most widely used nanomaterials nowadays. CuO NPs have numerous applications in biological processes, medicine, energy devices, environmental remediation, and industrial fields from nanotechnology. With the increasing concern about the energy crisis and the challenges of chemical and physical approaches for preparing metal NPs, attempts to develop modern alternative chemistry have gotten much attention. Biological approaches that do not produce toxic waste and therefore do not require purification processes have been the subject of numerous studies. Plants may be extremely useful in the study of biogenic metal NP synthesis. This review aims to shed more light on the interactions between plant extracts and CuO NP synthesis. The use of living plants for CuO NPs biosynthesis is a cost-effective and environmentally friendly process. To date, the findings have revealed many aspects of plant physiology and their relationships to the synthesis of NPs. The current state of the art and potential challenges in the green synthesis of CuO NPs are described in this paper. This study found a recent increase in the green synthesis of CuO NPs using various plant extracts. As a result, a thorough explanation of green synthesis and stabilizing agents for CuO NPs made from these green sources is given. Additionally, the multifunctional applications of CuO NPs synthesized with various plant extracts in environmental remediation, sensing, catalytic reduction, photocatalysis, diverse biological activities, energy storage, and several organic transformations such as reduction, coupling, and multicomponent reactions were carefully reviewed. We expect that this review could serve as a useful guide for readers with a general interest in the plant extract mediated biosynthesis of CuO NPs and their potential applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Cobre , Tecnología Química Verde , Extractos Vegetales
9.
Macromol Rapid Commun ; 42(11): e2100056, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33729614

RESUMEN

Light-responsive reversible two-way shape memory polymers (2W-SMPs) are highly promising for many fields due to indirect heating, clean, and remote control. In this work, a composite with both thermal- and near-infrared (NIR) light-induced reversible two-way shape memory effect (2W-SME) is prepared by doping extremely little quantities of 2D non-layered molybdenum dioxide nanosheets (2D-MoO2 ) into semicrystalline poly(ethylene-co-vinyl acetate) (EVA) networks. This is the first report on light-induced reversible two-way shape memory composites employing 2D-MoO2 as photothermal fillers. Upon switching the NIR light on and off, due to the excellent photothermal feature and stability of 2D-MoO2 , the composite exhibits remarkable light-induced reversible 2W-SME. A light-driven actuator for sensing applications is designed based on the composite and the circuit, where the lamp acting as an alarm can raise and fade upon responding to NIR light. A completely flexible, fuel-free self-walking soft robot is designed based on the advantages of the light-responsive reversible 2W-SMPs. Additionally, the composite acting as a light-fueled crane is able to lift and lower a load that is 3846 times its own weight. The results demonstrate that the prepared composite has a promising prospect for applications as actuators, self-walking soft robot and crane.


Asunto(s)
Rayos Infrarrojos , Materiales Inteligentes
10.
Macromol Rapid Commun ; 39(10): e1800058, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29656568

RESUMEN

Nanofiber-based hydrogels (NFHGs) prepared by the combination of traditional hydrogels and novel nanofibers have demonstrated great potential in various application fields, owing to their integrated advantages of superhydrophilicity, high water-holding capacity, good biocompatibility, enhanced mechanical strength, and excellent structural tenability. In this review, a comprehensive overview of the structure design and synthetic strategy of NFHGs derived from electrospinning technique, weaving, freeze-drying, 3D printing, and molecular self-assembling method is provided. The widely researched multifunctional applications, primarily involving tissue engineering, drug delivery, sensing, intelligent actuator, and oil/water separation are also presented. Furthermore, some unsolved scientific issues and possible directions for future development of this field are also intensively discussed.


Asunto(s)
Hidrogeles/química , Nanofibras/química , Materiales Biocompatibles/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
11.
Int J Biol Macromol ; 263(Pt 2): 130335, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403215

RESUMEN

The electrospinning technology has set off a tide and given rise to the attention of a widespread range of research territories, benefiting from the enhancement of nanofibers which made a spurt of progress. Nanofibers, continuously produced via electrospinning technology, have greater specific surface area and higher porosity and play a non-substitutable key role in many fields. Combined with the degradability and compatibility of the natural structure characteristics of polysaccharides, electrospun polysaccharide nanofiber membranes gradually infiltrate into the life field to help filter air contamination particles and water pollutants, treat wounds, keep food fresh, monitor electronic equipment, etc., thus improving the life quality. Compared with the evaluation of polysaccharide-based nanofiber membranes in a specific field, this paper comprehensively summarized the existing electrospinning technology and focused on the latest research progress about the application of polysaccharide-based nanofiber in different fields, represented by starch, chitosan, and cellulose. Finally, the benefits and defects of electrospun are discussed in brief, and the prospects for broadening the application of polysaccharide nanofiber membranes are presented for the glorious expectation dedicated to the progress of the eras.


Asunto(s)
Quitosano , Nanofibras , Nanofibras/química , Andamios del Tejido/química , Polisacáridos/química , Almidón
12.
J Agric Food Chem ; 72(29): 16438-16448, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38981019

RESUMEN

Steviol glycosides (SGs) are a natural sweetener widely used in the food and beverage industry, but the low solubility and stability of SG aqueous solutions greatly limit their application performance, especially in liquid formulations. In this work, we explore the solubility behavior of rebaudioside A (Reb A) in water, a major component of SGs, with the aim of clarifying the underlying mechanisms of the solubility and stability constraints of SGs, as well as the impact on their multifunctional properties. We demonstrate for the first time that Reb A exhibits hierarchical self-assembly in solutions, forming spherical micelles first when the concentration exceeds its critical micelle concentration (5.071 mg/mL), which then further assemble into large rod-like aggregates. The formation of such large Reb A aggregates is mainly dominated by hydrogen bonding and short-range Coulomb interaction energy, thus leading to the low solubility and precipitation of Reb A solutions. Surprisingly, aggregated Reb A structures display significantly improved organoleptic properties, revealing that self-aggregation can be developed as a simple, efficient, and green strategy for improving the taste profile of SGs. Additionally, the self-aggregation of Reb A at high concentrations impairs active encapsulation and also affects its interfacial and emulsifying properties.


Asunto(s)
Diterpenos de Tipo Kaurano , Glicósidos , Solubilidad , Edulcorantes , Diterpenos de Tipo Kaurano/química , Edulcorantes/química , Glicósidos/química , Agua/química , Micelas , Enlace de Hidrógeno , Gusto , Glucósidos/química , Stevia/química , Soluciones/química
13.
Nanomicro Lett ; 16(1): 118, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361077

RESUMEN

Stemming from the unique in-plane honeycomb lattice structure and the sp2 hybridized carbon atoms bonded by exceptionally strong carbon-carbon bonds, graphene exhibits remarkable anisotropic electrical, mechanical, and thermal properties. To maximize the utilization of graphene's in-plane properties, pre-constructed and aligned structures, such as oriented aerogels, films, and fibers, have been designed. The unique combination of aligned structure, high surface area, excellent electrical conductivity, mechanical stability, thermal conductivity, and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions, enabling advancements in diverse fields. This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites. It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively. The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties, showing enhanced electrical, mechanical, and thermal properties along the alignment at the sacrifice of the perpendicular direction. This review showcases remarkable properties and applications of aligned graphene aerogels and their composites, such as their suitability for electronics, environmental applications, thermal management, and energy storage. Challenges and potential opportunities are proposed to offer new insights into prospects of this material.

14.
J Colloid Interface Sci ; 666: 560-571, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613978

RESUMEN

The host lattice environments of Sb3+ has a great influence on its photophysical properties. Here, we synthesized three zero-dimensional organic metal halides of (TPA)2SbCl5 (1), Sb3+-doped (TPA)SnCl5(H2O)·2H2O (Sb3+-2), and Sb3+-doped (TPA)2SnCl6 (Sb3+-3). Compared with the intense orange emission of 1, Sb3+-3 has smaller lattice distortion, thus effectively suppressing the exciton transformation from singlet to triplet self-trapped exciton (STE) states, which makes Sb3+-3 has stronger singlet STE emission and further bring a white emission with a photoluminescence quantum efficiency (PLQE) of 93.4%. Conversely, the non-emission can be observed in Sb3+-2 even though it has a similar [SbCl5]2- structure to 1, which should be due to its indirect bandgap characteristics and the effective non-radiative relaxation caused by H2O in the lattice. Interestingly, the non-emission of Sb3+-2 can convert into the bright emission of Sb3+-3 under TPACl DMF solution treatment. Meanwhile, the white emission under 315 nm excitation of Sb3+-3 can change into orange emission upon 365 nm irradiation, and the luminescence can be further quenched by the treatment of HCl. Therefore, a triple-mode reversible luminescence switch of off-onI-onII-off can be achieved. Finally, we demonstrated the applications of Sb3+-doped compounds in single-component white light illumination, latent fingerprint detection, fluorescent anti-counterfeiting, and information encryption.

15.
J Colloid Interface Sci ; 633: 608-618, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36470140

RESUMEN

The synthesis of efficient, stable, and green multifunctional electrode materials is a long-standing challenge for modern society in the field of energy storage and conversion. To this end, we successfully synthesized five bimetallic precursor materials with excellent performance by hydrothermal reaction with the assistance of a high concentration of polyvinylpyrrolidone (PVP), and then, sulfide etched the lamellar precursor materials among them to obtain the one-dimensional heterostructured samples. Benefiting from the synergistic effect of the bimetal and the continuous electron/ion transport structure, the samples displayed excellent bifunctional activity in supercapacitor and oxygen evolution reaction (OER). Regarding supercapacitors, the exceptional performance of 2817.2 F g-1 at 1 A g-1 was demonstrated, while the asymmetric supercapacitors made showed an extraordinary energy density of 150.2 Wh kg-1 at a power density of 618.5 W kg-1 and outstanding cycling performance (94.74% capacity retention after 20,000 cycles at 10 A g-1). Simultaneously, a wearable flexible electrode that can be wrapped around a finger was coated on a carbon cloth and was found to light up a 0.5-m-long strip of light. Moreover, it exhibited an ultralow oxygen reduction overpotential of 249 mV at 10 mA cm-2. Hence, our work provides a facile strategy to modulate the synthesis of heterogeneous structured sulfides with a continuous electron/ion transport pathway, which possesses excellent oxygen reduction electrocatalytic performance while meeting superior supercapacitor performance. Such work provides an effective approach for the construction of multifunctional electrochemical energy materials.


Asunto(s)
Carbono , Oxígeno , Electrodos , Transporte de Electrón , Sulfuros , Azufre
16.
Small Methods ; 7(10): e2300468, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37431215

RESUMEN

Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.

17.
Small Methods ; : e2300213, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37381683

RESUMEN

Biological macroporous materials, such as stems of the plants and bone of the animals, possess outstanding properties for powerful guarantee of creatures' survival through the well-aligned architecture constructed from limited components. Transition metal carbides or nitrides (MXenes), as novel 2D assemblies, have attracted numerous attentions in various applications due to their unique properties. Therefore, mimicking the bioinspired architecture with MXenes will boost the development of human-made materials with unparalleled properties. Freeze casting has been widely applied to fabricate bioinspired MXene-based materials and achieve the assembly of MXene nanosheets into 3D forms. This process solves the inherent restacking problems of MXenes, simultaneously preserving the unique properties of MXenes with a physical process. Here, the ice-templated assembly of MXene in terms of the freezing processes and their potential mechanisms is summarized. In addition, applications of MXene-based materials in electromagnetic interference shielding and absorption, energy storage and conversion, as well as piezoresistive pressure sensors are also reviewed. Finally, the current challenges and bottlenecks of ice-templated assembly of MXene are further discussed to guide the development of bioinspired MXene-based materials.

18.
Adv Sci (Weinh) ; 10(33): e2303078, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37870181

RESUMEN

Strong substrate affinity and high catalytic efficiency are persistently pursued to generate high-performance nanozymes. Herein, with unique surface atomic configurations and distinct d-orbital coupling features of different metal components, a class of highly efficient MnFeCoNiCu transition metal high-entropy nanozymes (HEzymes) is prepared for the first time. Density functional theory calculations demonstrate that improved d-orbital coupling between different metals increases the electron density near the Fermi energy level (EF ) and shifts the position of the overall d-band center with respect to EF , thereby boosting the efficiency of site-to-site electron transfer while also enhancing the adsorption of oxygen intermediates during catalysis. As such, the proposed HEzymes exhibit superior substrate affinities and catalytic efficiencies comparable to that of natural horseradish peroxidase (HRP). Finally, HEzymes with superb peroxidase (POD)-like activity are used in biosensing and antibacterial applications. These results suggest that HEzymes have great potential as new-generation nanozymes.


Asunto(s)
Peroxidasa , Elementos de Transición , Entropía , Peroxidasas , Catálisis , Colorantes
19.
Materials (Basel) ; 16(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629973

RESUMEN

Three-dimensional (3D) printing, alternatively known as additive manufacturing, is a transformative technology enabling precise, customized, and efficient manufacturing of components with complex structures. It revolutionizes traditional processes, allowing rapid prototyping, cost-effective production, and intricate designs. The 3D printed graphene-based materials combine graphene's exceptional properties with additive manufacturing's versatility, offering precise control over intricate structures with enhanced functionalities. To gain comprehensive insights into the development of 3D printed graphene and graphene/polymer composites, this review delves into their intricate fabrication methods, unique structural attributes, and multifaceted applications across various domains. Recent advances in printable materials, apparatus characteristics, and printed structures of typical 3D printing techniques for graphene and graphene/polymer composites are addressed, including extrusion methods (direct ink writing and fused deposition modeling), photopolymerization strategies (stereolithography and digital light processing) and powder-based techniques. Multifunctional applications in energy storage, physical sensor, stretchable conductor, electromagnetic interference shielding and wave absorption, as well as bio-applications are highlighted. Despite significant advancements in 3D printed graphene and its polymer composites, innovative studies are still necessary to fully unlock their inherent capabilities.

20.
Nanomicro Lett ; 14(1): 194, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36161372

RESUMEN

One-dimensional (1D) SiO2 nanofibers (SNFs), one of the most popular inorganic nanomaterials, have aroused widespread attention because of their excellent chemical stability, as well as unique optical and thermal characteristics. Electrospinning is a straightforward and versatile method to prepare 1D SNFs with programmable structures, manageable dimensions, and modifiable properties, which hold great potential in many cutting-edge applications including aerospace, nanodevice, and energy. In this review, substantial advances in the structural design, controllable synthesis, and multifunctional applications of electrospun SNFs are highlighted. We begin with a brief introduction to the fundamental principles, available raw materials, and typical apparatus of electrospun SNFs. We then discuss the strategies for preparing SNFs with diverse structures in detail, especially stressing the newly emerging three-dimensional SiO2 nanofibrous aerogels. We continue with focus on major breakthroughs about brittleness-to-flexibility transition of SNFs and the means to achieve their mechanical reinforcement. In addition, we showcase recent applications enabled by electrospun SNFs, with particular emphasis on physical protection, health care and water treatment. In the end, we summarize this review and provide some perspectives on the future development direction of electrospun SNFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA