Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 16, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184574

RESUMEN

BACKGROUND: Aeromonas species are one of the most important etiologies of diseases in fish farms, leading to clinical manifestation and mortality and are associated with public health risks. This study aimed to investigate the prevalence, phenotypic and molecular characteristics of Aeromonas species isolated from farmed Clarias gariepinus using 16 S rRNA sequencing. Additionally, their antibiogram and multiple antibiotic resistance index were determined using a disc diffusion test. RESULTS: A total of 230 Aeromonas strains were isolated from Clarias gariepinus with 40.9% obtained from diseased fish, and 25% isolated from apparently healthy ones. Five different species including Aeromonas caviae, Aeromonas veronii, Aeromonas hydrophila, Aeromonas dhakensis and Aeromonas enteropelogenes were fully identified and genetically characterized. Based on the available literature, this is the first report of Aeromonas enteropelogenes from the study area. The phylogenetic analysis showed genetic heterogeneity and distance within the species and the reference strains. The multiple resistant Aeromonas species were susceptible to ciprofloxacin, gentamycin, and florfenicol. The Aeromonas species' multiple antibiotic resistance index values varied between 0.20 and 0.80 and were isolated from the farms where antibiotics were intensively used. CONCLUSIONS: The diversity of multidrug-resistant Aeromonas species isolated from fish farms is a major threat to fish production giving us more understanding of epidemiology and the multidrug Aeromonas species with a MAR index of greater than 0.2 were isolated from farms where antibiotic use was widespread. As a result, a considerably increased danger of multiple antibiotic resistance spreading to the fish culture environment may impact aquaculture production. Hence there is a need for appropriate and monitored drug usage.


Asunto(s)
Aeromonas , Bagres , Animales , Filogenia , Aeromonas/genética , Farmacorresistencia Microbiana , Antibacterianos/farmacología
2.
Antonie Van Leeuwenhoek ; 113(11): 1675-1687, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32939598

RESUMEN

A novel Gram-positive and endospore-forming bacterium assigned as strain SPB7T which is also a new source of a cyclic diketopiperazine (3S,6S)-3,6-diisobutylpiperazine-2,5-dione is described. A polyphasic (biochemical, phenotypic and genotypic) approach was used to clarify the taxonomic affiliation of this strain. The partial and complete 16S rRNA gene sequences revealed that strain SPB7T is a member of the Bacillus genus [showing high similarity (> 98.70%) with Bacillus spizizenii NRRL B-23049T, Bacillus tequilensis KCTC 13622T, Bacillus inaquosorum KCTC 13429T and Bacillus cabrialesii TE3T]. The maximum values for average nucleotide identity (ANI) and in silico DNA-DNA hybridization (GGDC, Formula 2) of strain SPB7T was obtained for twenty-five strains of Bacillus spizizenii (ANI 95.01-95.48% and GGDC 62.70-60.00%). The whole-genome phylogenetic relationship showed that SPB7T formed an individual and separated clade with the Bacillus spizizenii group. Principal cellular fatty acids identified in strain SPB7T were anteiso C15:0, anteiso C17:0, iso C15:0, iso C17:0, C16:0, C10:0 3OH and iso C17:1 ϖ10c. Polar lipid profile showed presence of diphosphotidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unknown phospholipids and five unknown lipids. Cells were rod shaped, catalase, oxidase-positive and motile. Growth occurred at 20-45 °C (optimal 35 °C), at pH 6.0-10.0 (optimal pH 8) and 0-10% (w/v) NaCl (optimal 2%). The phenotypic, biochemical, and genotypic traits of strain SPB7T strongly supported its taxonomic affiliation as a novel species of the Bacillus genus, for which the name Bacillus rugosus sp. nov. is proposed. The type strain is SPB7T (= NRRL B-65559T, = CICC 24827T, = MCC 4185T).


Asunto(s)
Antiinfecciosos/metabolismo , Bacillus/aislamiento & purificación , Bacillus/metabolismo , Dicetopiperazinas/metabolismo , Poríferos/microbiología , Animales , Bacillus/clasificación , Bacillus/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Lípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Molecules ; 25(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036491

RESUMEN

Amomi Fructus is widely used to treat digestive disorders, and Amomum villosum, A. villosum var. xanthioides, and A. longiligulare are permitted medicinally in national pharmacopeias. However, there are a variety of adulterants present in herbal markets owing to their morphological similarities to the genuine Amomum species. Forty-two Amomi Fructus samples from various origins were identified using internal transcribed spacer and chloroplast barcoding analyses, and then their chromatographic profiles were compared using chemometric analysis for chemotaxonomic monitoring. Among the Amomi Fructus samples, A. villosum, A. longiligulare, A. ghaticum, and A. microcarpum were confirmed as single Amomum species, whereas a mixture of either these Amomum species or with another Amomum species was observed in 15 samples. Chemotaxonomic monitoring results demonstrated that two medicinal Amomum samples, A. villosum and A. longiligulare, were not clearly distinguished from each other, but were apparently separated from other non-medicinal Amomum adulterants. A. ghaticum and A. microcarpum samples were also chemically different from other samples and formed their own species groups. Amomum species mixtures showed diverse variations of chemical correlations according to constituent Amomum species. Genetic authentication-based chemotaxonomic monitoring methods are helpful in classifying Amomi Fructus samples by their original species and to distinguish genuine Amomum species from the adulterants.


Asunto(s)
Amomum/química , Amomum/clasificación , Cromatografía Líquida de Alta Presión/métodos , Filogenia
4.
Int J Parasitol Parasites Wildl ; 7(3): 280-288, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30094177

RESUMEN

Larval Baylisascaris nematodes (L3), resulting from transuterine infection and neural migration, were discovered in the cerebrum of sibling moose calves (Alces alces gigas) near 1-3 days in age from Alaska. We provide the first definitive identification, linking morphology, biogeography, and molecular phylogenetics, of Baylisascaris transfuga in naturally infected ungulates. Life history and involvement of paratenic hosts across a broader assemblage of mammals, from rodents to ungulates, in the transmission of B. transfuga remains undefined. Neural infections, debilitating young moose, may seasonally predispose calves to predation by brown bears, facilitating transmission to definitive hosts. Discovery of fatal neurological infections by L3 of B. transfuga in mammalian hosts serves to demonstrate the potential for zoonotic infection, as widely established for B. procyonis, in other regions and where raccoon definitive hosts are abundant. In zones of sympatry for multi-species assemblages of Baylisascaris across the Holarctic region presumptive identification of B. procyonis in cases of neurological larval migrans must be considered with caution. Diagnostics in neural and somatic larval migrans involving species of Baylisascaris in mammalian and other vertebrate hosts should include molecular-based and authoritative identification established in a phylogenetic context.

5.
Springerplus ; 2(1): 127, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23565357

RESUMEN

The deep-sea environments of the South Atlantic Ocean are less studied in comparison to the North Atlantic and Pacific Oceans. With the aim of identifying the deep-sea bacteria in this less known ocean, 70 strains were isolated from eight sediment samples (depth range between 1905 to 5560 m) collected in the eastern part of the South Atlantic, from the equatorial region to the Cape Abyssal Plain, using three different culture media. The strains were classified into three phylogenetic groups, Gammaproteobacteria, Firmicutes and Actinobacteria, by the analysis of 16s rRNA gene sequences. Gammaproteobacteria and Firmicutes were the most frequently identified groups, with Halomonas the most frequent genus among the strains. Microorganisms belonging to Firmicutes were the only ones observed in all samples. Sixteen of the 41 identified operational taxonomic units probably represent new species. The presence of potentially new species reinforces the need for new studies in the deep-sea environments of the South Atlantic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA