Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(19): e2201136119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35507876

RESUMEN

The skeletal muscle dihydropyridine receptor (DHPR) ß1a subunit is indispensable for full trafficking of DHPRs into triadic junctions (i.e., the close apposition of transverse tubules and sarcoplasmic reticulum [SR]), facilitation of DHPRα1S voltage sensing, and arrangement of DHPRs into tetrads as a consequence of their interaction with ryanodine receptor (RyR1) homotetramers. These three features are obligatory for skeletal muscle excitation­contraction (EC) coupling. Previously, we showed that all four vertebrate ß isoforms (ß1­ß4) facilitate α1S triad targeting and, except for ß3, fully enable DHPRα1S voltage sensing [Dayal et al., Proc. Natl. Acad. Sci. U.S.A. 110, 7488­7493 (2013)]. Consequently, ß3 failed to restore EC coupling despite the fact that both ß3 and ß1a restore tetrads. Thus, all ß-subunits are able to restore triad targeting, but only ß1a restores both tetrads and proper DHPR­RyR1 coupling [Dayal et al., Proc. Natl. Acad. Sci. U.S.A. 110, 7488­7493 (2013)]. To investigate the molecular region(s) of ß1a responsible for the tetradic arrangement of DHPRs and thus DHPR­RyR1 coupling, we expressed loss- and gain-of-function chimeras between ß1a and ß4, with systematically swapped domains in zebrafish strain relaxed (ß1-null) for patch clamp, cytoplasmic Ca2+ transients, motility, and freeze-fracture electron microscopy. ß1a/ß4 chimeras with either N terminus, SH3, HOOK, or GK domain derived from ß4 showed complete restoration of SR Ca2+ release. However, chimera ß1a/ß4(C) with ß4 C terminus produced significantly reduced cytoplasmic Ca2+ transients. Conversely, gain-of-function chimera ß4/ß1a(C) with ß1a C terminus completely restored cytoplasmic Ca2+ transients, DHPR tetrads, and motility. Furthermore, we found that the nonconserved, distal C terminus of ß1a plays a pivotal role in reconstitution of DHPR tetrads and thus allosteric DHPR­RyR1 interaction, essential for skeletal muscle EC coupling.


Asunto(s)
Canales de Calcio Tipo L , Fibras Musculares Esqueléticas , Canal Liberador de Calcio Receptor de Rianodina , Proteínas Adaptadoras Transductoras de Señales , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Acoplamiento Excitación-Contracción , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Annu Rev Physiol ; 83: 183-203, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106102

RESUMEN

The identification of a gain-of-function mutation in CACNA1C as the cause of Timothy syndrome, a rare disorder characterized by cardiac arrhythmias and syndactyly, highlighted roles for the L-type voltage-gated Ca2+ channel CaV1.2 in nonexcitable cells. Previous studies in cells and animal models had suggested that several voltage-gated Ca2+ channels (VGCCs) regulated critical signaling events in various cell types that are not expected to support action potentials, but definitive data were lacking. VGCCs occupy a special position among ion channels, uniquely able to translate membrane excitability into the cytoplasmic Ca2+ changes that underlie the cellular responses to electrical activity. Yet how these channels function in cells not firing action potentials and what the consequences of their actions are in nonexcitable cells remain critical questions. The development of new animal and cellular models and the emergence of large data sets and unbiased genome screens have added to our understanding of the unanticipated roles for VGCCs in nonexcitable cells. Here, we review current knowledge of VGCC regulation and function in nonexcitable tissues and cells, with the goal of providing a platform for continued investigation.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Potenciales de Acción/fisiología , Animales , Trastorno Autístico/metabolismo , Humanos , Síndrome de QT Prolongado/metabolismo , Transducción de Señal/fisiología , Sindactilia/metabolismo
3.
J Biol Chem ; 299(1): 102777, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496072

RESUMEN

Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.


Asunto(s)
Canales de Calcio Tipo L , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calmodulina , Síndrome de QT Prolongado , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mutación , Estructura Secundaria de Proteína/genética , Unión Proteica/genética , Cristalografía
4.
J Mol Cell Cardiol ; 180: 10-21, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120927

RESUMEN

Ca2+ dependent facilitation (CDF) and frequency dependent acceleration of relaxation (FDAR) are regulatory mechanisms that potentiate cardiomyocyte Ca2+ channel function and increase the rate of Ca2+ sequestration following a Ca2+-release event, respectively, when depolarization frequency increases. CDF and FDAR likely evolved to maintain EC coupling at increased heart rates. Ca2+/calmodulin-dependent kinase II (CaMKII) was shown to be indispensable to both; however, the mechanisms remain to be completely elucidated. CaMKII activity can be modulated by post-translational modifications but if and how these modifications impact CDF and FDAR is unknown. Intracellular O-linked glycosylation (O-GlcNAcylation) is a post-translational modification that acts as a signaling molecule and metabolic sensor. In hyperglycemic conditions, CaMKII was shown to be O-GlcNAcylated resulting in pathologic activity. Here we sought to investigate whether O-GlcNAcylation impacts CDF and FDAR through modulation of CaMKII activity in a pseudo-physiologic setting. Using voltage-clamp and Ca2+ photometry we show that cardiomyocyte CDF and FDAR are significantly diminished in conditions of reduced O-GlcNAcylation. Immunoblot showed that CaMKIIδ and calmodulin expression are increased but the autophosphorylation of CaMKIIδ and the muscle cell-specific CaMKIIß isoform are reduced by 75% or more when O-GlcNAcylation is inhibited. We also show that the enzyme responsible for O-GlcNAcylation (OGT) can likely be localized in the dyad space and/or at the cardiac sarcoplasmic reticulum and is precipitated by calmodulin in a Ca2+ dependent manner. These findings will have important implications for our understanding of how CaMKII and OGT interact to impact cardiomyocyte EC coupling in normal physiologic settings as well as in disease states where CaMKII and OGT may be aberrantly regulated.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Retículo Sarcoplasmático/metabolismo , Aceleración , Calcio/metabolismo
5.
Curr Top Membr ; 90: 95-121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36368876

RESUMEN

Ischemic heart disease due to macrovascular atherosclerosis and microvascular dysfunction is the major cause of death worldwide and the unabated increase in metabolic syndrome is a major reason why this will continue. Intracellular free Ca2+ ([Ca2+]i) regulates a variety of cellular functions including contraction, proliferation, migration, and transcription. It follows that studies of vascular Ca2+ regulation in reductionist models and translational animal models are vital to understanding vascular health and disease. Swine with metabolic syndrome (MetS) develop the full range of coronary atherosclerosis from mild to severe disease. Intravascular imaging enables quantitative measurement of atherosclerosis in vivo, so viable coronary smooth muscle (CSM) cells can be dispersed from the arteries to enable Ca2+ transport studies in native cells. Transition of CSM from the contractile phenotype in the healthy swine to the proliferative phenotype in mild atherosclerosis was associated with increases in SERCA activity, sarcoplasmic reticulum Ca2+, and voltage-gated Ca2+ channel function. In vitro organ culture confirmed that SERCA activation induces CSM proliferation. Transition from the proliferative to a more osteogenic phenotype was associated with decreases in all three Ca2+ transporters. Overall, there was a biphasic change in Ca2+ transporters over the progression of atherosclerosis in the swine model and this was confirmed in CSM from failing explanted hearts of humans. A major determinant of endolysosome content in human CSM is the severity of atherosclerosis. In swine CSM endolysosome Ca2+ release occurred through the TPC2 channel. We propose a multiphasic change in Ca2+ transporters over the progression of coronary atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Síndrome Metabólico , Porcinos , Humanos , Animales , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/metabolismo , Calcio/metabolismo , Músculo Liso/metabolismo , Aterosclerosis/complicaciones
6.
J Exp Biol ; 224(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33944932

RESUMEN

Calcium ions (Ca2+) entering cilia through the ciliary voltage-gated calcium channels (CaV) during the action potential causes reversal of the ciliary power stroke and backward swimming in Paramecium tetraurelia. How calcium is returned to the resting level is not yet clear. Our focus is on calcium pumps as a possible mechanism. There are 23 P. tetraurelia genes for calcium pumps that are members of the family of plasma membrane Ca2+ ATPases (PMCAs). They have domains homologous to those found in mammalian PMCAs. Of the 13 pump proteins previously identified in cilia, ptPMCA2a and ptPMCA2b are most abundant in the cilia. We used RNAi to examine which PMCA might be involved in regulating intraciliary Ca2+ after the action potential. RNAi for only ptPMCA2a and ptPMCA2b causes cells to significantly prolong their backward swimming, which indicates that Ca2+ extrusion in the cilia is impaired when these PMCAs are depleted. We used immunoprecipitations (IP) to find that ptPMCA2a and ptPMCA2b are co-immunoprecipitated with the CaV channel α1 subunits that are found only in the cilia. We used iodixanol (OptiPrep) density gradients to show that ptPMCA2a and ptPMCA2b and CaV1c are found in the same density fractions. These results suggest that ptPMCA2a and ptPMCA2b are located in the proximity of ciliary CaV channels.


Asunto(s)
Paramecium , Potenciales de Acción , Animales , Calcio/metabolismo , Canales de Calcio/genética , Cilios/metabolismo , Iones , Paramecium/genética , Paramecium/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(42): E9934-E9943, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30257950

RESUMEN

ß subunits of high voltage-gated Ca2+ (CaV) channels promote cell-surface expression of pore-forming α1 subunits and regulate channel gating through binding to the α-interaction domain (AID) in the first intracellular loop. We addressed the stability of CaV α1B-ß interactions by rapamycin-translocatable CaV ß subunits that allow drug-induced sequestration and uncoupling of the ß subunit from CaV2.2 channel complexes in intact cells. Without CaV α1B/α2δ1, all modified ß subunits, except membrane-tethered ß2a and ß2e, are in the cytosol and rapidly translocate upon rapamycin addition to anchors on target organelles: plasma membrane, mitochondria, or endoplasmic reticulum. In cells coexpressing CaV α1B/α2δ1 subunits, the translocatable ß subunits colocalize at the plasma membrane with α1B and stay there after rapamycin application, indicating that interactions between α1B and bound ß subunits are very stable. However, the interaction becomes dynamic when other competing ß isoforms are coexpressed. Addition of rapamycin, then, switches channel gating and regulation by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipid. Thus, expression of free ß isoforms around the channel reveals a dynamic aspect to the α1B-ß interaction. On the other hand, translocatable ß subunits with AID-binding site mutations are easily dissociated from CaV α1B on the addition of rapamycin, decreasing current amplitude and PI(4,5)P2 sensitivity. Furthermore, the mutations slow CaV2.2 current inactivation and shift the voltage dependence of activation to more positive potentials. Mutated translocatable ß subunits work similarly in CaV2.3 channels. In sum, the strong interaction of CaV α1B-ß subunits can be overcome by other free ß isoforms, permitting dynamic changes in channel properties in intact cells.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo N/metabolismo , Activación del Canal Iónico/fisiología , Fosfatidilinositoles/metabolismo , Sirolimus/metabolismo , Animales , Unión Competitiva , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Isoformas de Proteínas , Subunidades de Proteína , Transporte de Proteínas , Ratas
8.
J Physiol ; 598(9): 1775-1790, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31177540

RESUMEN

KEY POINTS: Circadian oscillations in spontaneous action potential firing in the suprachiasmatic nucleus (SCN) translate time-of-day throughout the mammalian brain. The ion channels that regulate the circadian pattern of SCN firing have not been comprehensively identified. Ca2+ channels regulate action potential activity across many types of excitable cells, and the activity of L-, N-, P/Q- and R-type channels are required for normal daytime firing frequency in SCN neurons and circuit rhythms. Only the L-type Ca2+ current exhibits a day versus night difference in current magnitude, providing insight into the mechanism that produces rhythmic action potential firing in SCN. ABSTRACT: The mammalian circadian clock encodes time via rhythmic action potential activity in the suprachiasmatic nucleus (SCN) of the hypothalamus, which governs daily rhythms in physiology and behaviour. SCN neurons exhibit 24 h oscillations in spontaneous firing, with higher firing during day compared to night. Several ionic currents have been identified that regulate SCN firing, including voltage-gated Ca2+ currents, but the circadian regulation of distinct voltage-gated Ca2+ channel (VGCC) components has not been comprehensively addressed. In this study, whole-cell L- (nimodipine-sensitive), N- and P/Q- (ω-agatoxin IVA, ω-conotoxin GVIA, ω-conotoxin MVIIC-sensitive), R- (Ni2+ -sensitive) and T-type (TTA-P2-sensitive) currents were recorded from day and night SCN slices. Using standard voltage protocols, Ni2+ -sensitive currents comprised the largest proportion of total VGCC current, followed by nimodipine-, ω-agatoxin IVA-, ω-conotoxin GVIA- and TTA-P2-sensitive currents. Only the nimodipine-sensitive current exhibited a diurnal difference in magnitude, with daytime current larger than night. No diurnal variation was observed for the other Ca2+ current subtypes. The difference in nimodipine-sensitive current was due to larger peak current activated during the day, not differences in inactivation, and was eliminated by Bay K8644. Blocking L-type channels decreased firing selectively during the day, consistent with higher current magnitudes, and reduced SCN circuit rhythmicity recorded by multi-electrode arrays. Yet blocking N-, P/Q- and R-type channels also decreased daytime firing, with little effect at night, and decreased circuit rhythmicity. These data identify a unique diurnal regulation of L-type current among the major VGCC subtypes in SCN neurons, but also reveal that diurnal modulation is not required for time-of-day-specific effects on firing and circuit rhythmicity.


Asunto(s)
Relojes Circadianos , Neuronas , Potenciales de Acción , Animales , Bloqueadores de los Canales de Calcio/farmacología , Ritmo Circadiano , Núcleo Supraquiasmático
9.
J Physiol ; 598(9): 1649-1654, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30735245

RESUMEN

Action potential driven neuronal signalling drives several electrical and biochemical processes in the nervous system. However, neurons can maintain synaptic communication and signalling under resting conditions independently of activity. Importantly, these processes are regulated by Ca2+ signals that occur at rest. Several studies have suggested that opening of voltage-gated Ca2+ channels near resting membrane potentials, activation of NMDA receptors in the absence of depolarization or Ca2+ release from intracellular stores can drive neurotransmitter release as well as subsequent signalling in the absence of action potentials. Interestingly, recent studies have demonstrated that manipulation of resting neuronal Ca2+ signalling yielded pronounced homeostatic synaptic plasticity, suggesting a critical role for this resting form of signalling in regulation of synaptic efficacy and neuronal homeostasis. Given their robust impact on synaptic efficacy and neuronal signalling, neuronal resting Ca2+ signals warrant further mechanistic analysis that includes the potential role of store-operated Ca2+ entry in these processes.


Asunto(s)
Calcio , Neuronas , Potenciales de Acción , Potenciales de la Membrana , Transmisión Sináptica
10.
Basic Res Cardiol ; 115(6): 59, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32910282

RESUMEN

Cardiomyocyte L-type Ca2+ channels (Cavs) are targets of signaling pathways that modulate channel activity in response to physiologic stimuli. Cav regulation is typically transient and beneficial but chronic stimulation can become pathologic; therefore, gaining a more complete understanding of Cav regulation is of critical importance. Intracellular O-linked glycosylation (O-GlcNAcylation), which is the result of two enzymes that dynamically add and remove single N-acetylglucosamines to and from intracellular serine/threonine residues (OGT and OGA respectively), has proven to be an increasingly important post-translational modification that contributes to the regulation of many physiologic processes. However, there is currently no known role for O-GlcNAcylation in the direct regulation of Cav activity nor is its contribution to cardiac electrical signaling and EC coupling well understood. Here we aimed to delineate the role of O-GlcNAcylation in regulating cardiomyocyte L-type Cav activity and its subsequent effect on EC coupling by utilizing a mouse strain possessing an inducible cardiomyocyte-specific OGT-null-transgene. Ablation of the OGT-gene in adult cardiomyocytes (OGTKO) reduced OGT expression and O-GlcNAcylation by > 90%. Voltage clamp recordings indicated an ~ 40% reduction in OGTKO Cav current (ICa), but with increased efficacy of adrenergic stimulation, and Cav steady-state gating and window current were significantly depolarized. Consistently, OGTKO cardiomyocyte intracellular Ca2+ release and contractility were diminished and demonstrated greater beat-to-beat variability. Additionally, we show that the Cav α1 and ß2 subunits are O-GlcNAcylated while α2δ1 is not. Echocardiographic analyses indicated that the reductions in OGTKO cardiomyocyte Ca2+ handling and contractility were conserved at the whole-heart level as evidenced by significantly reduced left-ventricular contractility in the absence of hypertrophy. The data indicate, for the first time, that O-GlcNAc signaling is a critical and direct regulator of cardiomyocyte ICa achieved through altered Cav expression, gating, and response to adrenergic stimulation; these mechanisms have significant implications for understanding how EC coupling is regulated in health and disease.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Acoplamiento Excitación-Contracción , Miocitos Cardíacos/enzimología , N-Acetilglucosaminiltransferasas/metabolismo , Función Ventricular Izquierda , Agonistas Adrenérgicos beta/farmacología , Animales , Acoplamiento Excitación-Contracción/efectos de los fármacos , Glicosilación , Activación del Canal Iónico , Isoproterenol/farmacología , Masculino , Potenciales de la Membrana , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , N-Acetilglucosaminiltransferasas/genética , Función Ventricular Izquierda/efectos de los fármacos
11.
Am J Physiol Regul Integr Comp Physiol ; 319(5): R584-R591, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32966123

RESUMEN

We evaluated the hypothesis that the activation of L-type voltage-gated Ca2+ channels contributes to exercise training-induced augmentation in cholinergic sweating. On separate days, 10 habitually trained and 10 untrained men participated in two experimental protocols. Prior to each protocol, we administered 1% verapamil (Verapamil, L-type voltage-gated Ca2+ channel blocker) and saline (Control) at forearm skin sites on both arms via transdermal iontophoresis. In protocol 1, we administered low (0.001%) and high (1%) doses of pilocarpine at both the verapamil-treated and verapamil-untreated forearm sites. In protocol 2, participants were passively heated by immersing their limbs in hot water (43°C) until rectal temperature increased by 1.0°C above baseline resting levels. Sweat rate at all forearm sites was continuously measured throughout both protocols. Pilocarpine-induced sweating in Control was higher in trained than in untrained men for both the concentrations of pilocarpine (both P ≤ 0.001). Pilocarpine-induced sweating at the low-dose site was attenuated at the Verapamil versus the Control site in both the groups (both P ≤ 0.004), albeit the reduction was greater in trained as compared with in untrained men (P = 0.005). The verapamil-mediated reduction in sweating remained intact at the high-dose pilocarpine site in the untrained men (P = 0.004) but not the trained men (P = 0.180). Sweating did not differ between Control and Verapamil sites with increases in rectal temperature in both groups (interaction, P = 0.571). We show that activation of L-type voltage-gated Ca2+ channels modulates sweat production in habitually trained men induced by a low dose of pilocarpine. However, no effect on sweating was observed during passive heating in either group.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Ejercicio Físico , Calor , Sudoración/efectos de los fármacos , Verapamilo/farmacología , Adulto , Bloqueadores de los Canales de Calcio/farmacología , Humanos , Masculino , Agonistas Muscarínicos/farmacología , Pilocarpina/farmacología
12.
Adv Exp Med Biol ; 1131: 281-320, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31646515

RESUMEN

In mammalian cardiomyocytes, Ca2+ influx through L-type voltage-gated Ca2+ channels (VGCCs) is amplified by release of Ca2+ via type 2 ryanodine receptors (RyR2) in the sarcoplasmic reticulum (SR): a process termed Ca2+-induced Ca2+-release (CICR). In mammalian skeletal muscles, VGCCs play a distinct role as voltage-sensors, physically interacting with RyR1 channels to initiate Ca2+ release in a mechanism termed depolarisation-induced Ca2+-release (DICR). In the current study, we surveyed the genomes of animals and their close relatives, to explore the evolutionary history of genes encoding three proteins pivotal for ECC: L-type VGCCs; RyRs; and a protein family that anchors intracellular organelles to plasma membranes, namely junctophilins (JPHs). In agreement with earlier studies, we find that non-vertebrate eukaryotes either lack VGCCs, RyRs and JPHs; or contain a single homologue of each protein. Furthermore, the molecular features of these proteins thought to be essential for DICR are only detectable within vertebrates and not in any other taxonomic group. Consistent with earlier physiological and ultrastructural observations, this suggests that CICR is the most basal form of ECC and that DICR is a vertebrate innovation. This development was accompanied by the appearance of multiple homologues of RyRs, VGCCs and junctophilins in vertebrates, thought to have arisen by 'whole genome replication' mechanisms. Subsequent gene duplications and losses have resulted in distinct assemblies of ECC components in different vertebrate clades, with striking examples being the apparent absence of RyR2 from amphibians, and additional duplication events for all three ECC proteins in teleost fish. This is consistent with teleosts possessing the most derived mode of DICR, with their Cav1.1 VGCCs completely lacking in Ca2+ channel activity.


Asunto(s)
Canales de Calcio Tipo L , Evolución Molecular , Acoplamiento Excitación-Contracción , Canal Liberador de Calcio Receptor de Rianodina , Animales , Canales de Calcio Tipo L/metabolismo , Acoplamiento Excitación-Contracción/genética , Peces/genética , Peces/metabolismo , Genoma/genética , Músculo Esquelético/fisiología , Miocitos Cardíacos/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/fisiología
13.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31940976

RESUMEN

Allium vegetables such as garlic (Allium sativum L.) are rich in organosulfur compounds that prevent human chronic diseases, including cancer. Of these, diallyl trisulfide (DATS) exhibits anticancer effects against a variety of tumors, including malignant melanoma. Although previous studies have shown that DATS increases intracellular calcium (Ca2+) in different cancer cell types, the role of Ca2+ in the anticancer effect is obscure. In the present study, we investigated the Ca2+ pathways involved in the anti-melanoma effect. We used melittin, the bee venom that can activate a store-operated Ca2+ entry (SOCE) and apoptosis, as a reference. DATS increased apoptosis in human melanoma cell lines in a Ca2+-dependent manner. It also induced mitochondrial Ca2+ (Ca2+mit) overload through intracellular and extracellular Ca2+ fluxes independently of SOCE. Strikingly, acidification augmented Ca2+mit overload, and Ca2+ channel blockers reduced the effect more significantly under acidic pH conditions. On the contrary, acidification mitigated SOCE and Ca2+mit overload caused by melittin. Finally, Ca2+ channel blockers entirely inhibited the anti-melanoma effect of DATS. Our findings suggest that DATS explicitly evokes Ca2+mit overload via a non-SOCE, thereby displaying the anti-melanoma effect.


Asunto(s)
Compuestos Alílicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Calcio/metabolismo , Melanoma , Mitocondrias/metabolismo , Proteínas de Neoplasias , Neoplasias Cutáneas , Sulfuros/farmacología , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Mitocondrias/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
14.
Glia ; 67(10): 1922-1932, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31313856

RESUMEN

Communication between neurons and developing oligodendrocytes (OLs) leading to OL Ca2+ rise is critical for axon myelination and OL development. Here, we investigate signaling factors and sources of Ca2+ rise in OLs in the mouse brainstem. Glutamate puff or axon fiber stimulation induces a Ca2+ rise in pre-myelinating OLs, which is primarily mediated by Ca2+ -permeable AMPA receptors. During glutamate application, inward currents via AMPA receptors and elevated extracellular K+ caused by increased neuronal activity collectively lead to OL depolarization, triggering Ca2+ influx via P/Q- and L-type voltage-gated Ca2+ (Cav ) channels. Thus, glutamate is a key signaling factor in dynamic communication between neurons and OLs that triggers Ca2+ transients via AMPARs and Cav channels in developing OLs. The results provide a mechanism for OL Ca2+ dynamics in response to neuronal input, which has implications for OL development and myelination.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Receptores AMPA/metabolismo , Animales , Cationes/metabolismo , Ácido Glutámico/metabolismo , Ratones Transgénicos , Potasio/metabolismo , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
15.
Curr Top Membr ; 82: 53-91, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30360783

RESUMEN

Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.


Asunto(s)
Calcio/metabolismo , Colesterol/metabolismo , Endotelio Vascular/metabolismo , Canales de Calcio/química , Canales de Calcio/metabolismo , Caveolina 1/metabolismo , Humanos , Pulmón/metabolismo , Canales Catiónicos TRPC/metabolismo
16.
J Physiol ; 595(20): 6417-6428, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28857175

RESUMEN

KEY POINTS: Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . Acute expression of human wild-type and R1239H HypoPP1 mutant α1 subunits in mature mouse muscles showed that R1239H fibres displayed Ca2+ currents of reduced amplitude and larger resting leak inward current increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data suggest that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore and could explain why paralytic attacks preferentially occur during the recovery period following muscle exercise. ABSTRACT: Missense mutations in the gene encoding the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel induce type 1 hypokalaemic periodic paralysis, a poorly understood neuromuscular disease characterized by episodic attacks of paralysis associated with low serum K+ . The present study aimed at identifying the changes in muscle fibre electrical properties induced by acute expression of the R1239H hypokalaemic periodic paralysis human mutant α1 subunit of Ca2+ channels in a mature muscle environment to better understand the pathophysiological mechanisms involved in this disorder. We transferred genes encoding wild-type and R1239H mutant human Ca2+ channels into hindlimb mouse muscle by electroporation and combined voltage-clamp and intracellular pH measurements on enzymatically dissociated single muscle fibres. As compared to fibres expressing wild-type α1 subunits, R1239H mutant-expressing fibres displayed Ca2+ currents of reduced amplitude and a higher resting leak inward current that was increased by external acidification. External acidification also produced intracellular acidification at a higher rate in R1239H fibres and inhibited inward rectifier K+ currents. These data indicate that the R1239H mutation induces an elevated leak H+ current at rest flowing through a gating pore created by the mutation and that external acidification favours onset of muscle paralysis by potentiating H+ depolarizing currents and inhibiting resting inward rectifier K+ currents. Our results could thus explain why paralytic attacks preferentially occur during the recovery period following intense muscle exercise.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Parálisis Periódica Hipopotasémica , Fibras Musculares Esqueléticas/fisiología , Animales , Concentración de Iones de Hidrógeno , Masculino , Ratones , Mutación Missense , Técnicas de Placa-Clamp
17.
Am J Physiol Heart Circ Physiol ; 312(3): H384-H391, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923791

RESUMEN

Constitutive regulation by PKA has recently been shown to contribute to L-type Ca2+ current (ICaL) at the ventricular t-tubule in heart failure. Conversely, reduction in constitutive regulation by PKA has been proposed to underlie the downregulation of atrial ICaL in heart failure. The hypothesis that downregulation of atrial ICaL in heart failure involves reduced channel phosphorylation was examined. Anesthetized adult male Wistar rats underwent surgical coronary artery ligation (CAL, N=10) or equivalent sham-operation (Sham, N=12). Left atrial myocytes were isolated ~18 wk postsurgery and whole cell currents recorded (holding potential=-80 mV). ICaL activated by depolarizing pulses to voltages from -40 to +50 mV were normalized to cell capacitance and current density-voltage relations plotted. CAL cell capacitances were ~1.67-fold greater than Sham (P ≤ 0.0001). Maximal ICaL conductance (Gmax ) was downregulated more than 2-fold in CAL vs. Sham myocytes (P < 0.0001). Norepinephrine (1 µmol/l) increased Gmax >50% more effectively in CAL than in Sham so that differences in ICaL density were abolished. Differences between CAL and Sham Gmax were not abolished by calyculin A (100 nmol/l), suggesting that increased protein dephosphorylation did not account for ICaL downregulation. Treatment with either H-89 (10 µmol/l) or AIP (5 µmol/l) had no effect on basal currents in Sham or CAL myocytes, indicating that, in contrast to ventricular myocytes, neither PKA nor CaMKII regulated basal ICaL Expression of the L-type α1C-subunit, protein phosphatases 1 and 2A, and inhibitor-1 proteins was unchanged. In conclusion, reduction in PKA-dependent regulation did not contribute to downregulation of atrial ICaL in heart failure.NEW & NOTEWORTHY Whole cell recording of L-type Ca2+ currents in atrial myocytes from rat hearts subjected to coronary artery ligation compared with those from sham-operated controls reveals marked reduction in current density in heart failure without change in channel subunit expression and associated with altered phosphorylation independent of protein kinase A.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Atrios Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Atrios Cardíacos/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Isoquinolinas/farmacología , Masculino , Potenciales de la Membrana , Norepinefrina/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Sulfonamidas/farmacología
18.
Biochem Biophys Res Commun ; 479(2): 297-304, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27639646

RESUMEN

Carbon monoxide (CO), derived by the enzymatic reaction of heme oxygenase (HO), is a cellular regulator of energy metabolism and cytoprotection; however, its underlying mechanism has not been clearly elucidated. Astrocytes pre-exposed to the CO-releasing compound CORM-2 increased mitochondrial biogenesis, mitochondrial electron transport components (cytochrome c, Cyt c; cytochrome c oxidase subunit 2, COX2), and ATP synthesis. The increased mitochondrial function was correlated with activation of AMP-activated protein kinase α and upregulation of HO-1, peroxisome proliferators-activated receptor γ-coactivator-1α (PGC-1α), and estrogen-related receptor α (ERRα). These events elicited by CORM-2 were suppressed by Ca2+ chelators, a HO inhibitor, and an L-type Ca2+ channel blocker, but not other Ca2+ channel inhibitors. Among the HO byproducts, combined CORM-2 and bilirubin treatment effectively increased PGC-1α, Cyt c and COX2 expression, mitochondrial biogenesis, and ATP synthesis, and these increases were blocked by Ca2+ chelators. Moreover, cerebral ischemia significantly increased HO-1, PGC-1α, and ERRα levels, subsequently increasing Cyt c and COX2 expression, in wild-type mice, compared with HO-1+/- mice. These results suggest that HO-1-derived CO enhances mitochondrial biogenesis in astrocytes by activating L-type Ca2+ channel-mediated PGC-1α/ERRα axis, leading to maintenance of astrocyte function and neuroprotection/recovery against damage of brain function.


Asunto(s)
Astrocitos/metabolismo , Canales de Calcio Tipo L/metabolismo , Monóxido de Carbono/química , Hemo-Oxigenasa 1/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Estrógenos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/citología , Línea Celular , Ciclooxigenasa 2/metabolismo , Citocromos c/metabolismo , Transporte de Electrón , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Biogénesis de Organelos , Interferencia de ARN , Receptor Relacionado con Estrógeno ERRalfa
19.
J Ethnopharmacol ; 328: 117855, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38346524

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM: To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS: Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS: At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION: AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.


Asunto(s)
Catequina/análogos & derivados , Miocitos del Músculo Liso , , Ratas , Animales , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Vasodilatación , Vasos Coronarios , Arterias Mesentéricas , Vasoconstrictores/farmacología , Agua/farmacología
20.
Cell Rep ; 43(7): 114428, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996073

RESUMEN

To achieve the functional polarization that underlies brain computation, neurons sort protein material into distinct compartments. Ion channel composition, for example, differs between axons and dendrites, but the molecular determinants for their polarized trafficking remain obscure. Here, we identify mechanisms that target voltage-gated Ca2+ channels (CaVs) to distinct subcellular compartments. In hippocampal neurons, CaV2s trigger neurotransmitter release at the presynaptic active zone, and CaV1s localize somatodendritically. After knockout of all three CaV2s, expression of CaV2.1, but not CaV1.3, restores neurotransmitter release. We find that chimeric CaV1.3s with CaV2.1 intracellular C-termini localize to the active zone, mediate synaptic vesicle exocytosis, and render release sensitive to CaV1 blockers. This dominant targeting function of the CaV2.1 C-terminus requires the first EF hand in its proximal segment, and replacement of the CaV2.1 C-terminus with that of CaV1.3 abolishes CaV2.1 active zone localization and function. We conclude that CaV intracellular C-termini mediate compartment-specific targeting.


Asunto(s)
Hipocampo , Animales , Hipocampo/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio/metabolismo , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo N/genética , Neuronas/metabolismo , Humanos , Ratones , Ratas , Vesículas Sinápticas/metabolismo , Exocitosis , Células HEK293
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA