Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.779
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 82(3): 696-708.e4, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090599

RESUMEN

We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1as cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G2. In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Cromosomas , ADN/metabolismo , Linfoma de Células B/metabolismo , Proteínas Nucleares/metabolismo , Profase , Proteoma , Proteómica , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Pollos , Cromatina/genética , ADN/genética , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patología , Proteínas Nucleares/genética , Unión Proteica , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Factores de Tiempo
2.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38828852

RESUMEN

The cellular and genetic networks that contribute to the development of the zeugopod (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate-mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH-expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that although the majority of the ulna develops in response to paracrine SHH signalling in both the chicken and mouse, there are differences in the contribution of SHH-expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that, although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks that contribute to their development and evolution are not fixed.


Asunto(s)
Animales Modificados Genéticamente , Pollos , Proteínas Hedgehog , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Pollos/genética , Ratones , Evolución Biológica , Embrión de Pollo , Cúbito , Regulación del Desarrollo de la Expresión Génica , Peroné/metabolismo , Radio (Anatomía)/metabolismo , Humanos , Extremidades/embriología
3.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828854

RESUMEN

The neural plate border (NPB) of vertebrate embryos is segregated from the neural plate (NP) and epidermal regions, and comprises an intermingled group of progenitors with multiple fate potential. Recent studies have shown that, during the gastrula stage, TFAP2A acts as a pioneer factor in remodeling the epigenetic landscape required to activate components of the NPB induction program. Here, we show that chick Tfap2a has two highly conserved binding sites for miR-137, and both display a reciprocal expression pattern at the NPB and NP, respectively. In addition, ectopic miR-137 expression reduced TFAP2A, whereas its functional inhibition expanded their territorial distribution overlapping with PAX7. Furthermore, we demonstrate that loss of the de novo DNA methyltransferase DNMT3A expanded miR-137 expression to the NPB. Bisulfite sequencing revealed a markedly elevated presence of non-canonical CpH methylation within the miR-137 promoter region when comparing NPB and NP samples. Our findings show that miR-137 contributes to the robustness of NPB territorial restriction in vertebrate development.


Asunto(s)
Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , MicroARNs , Placa Neural , Factor de Transcripción AP-2 , Animales , MicroARNs/genética , MicroARNs/metabolismo , Embrión de Pollo , Metilación de ADN/genética , Placa Neural/metabolismo , Placa Neural/embriología , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A/metabolismo , Regiones Promotoras Genéticas/genética , Sitios de Unión
4.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39157903

RESUMEN

Ciliopathies are characterized by the absence or dysfunction of primary cilia. Despite the fact that cognitive impairments are a common feature of ciliopathies, how cilia dysfunction affects neuronal development has not been characterized in detail. Here, we show that primary cilium-mediated signaling is required cell-autonomously by neurons during neural circuit formation. In particular, a functional primary cilium is crucial during axonal pathfinding for the switch in responsiveness of axons at a choice point or intermediate target. Using different animal models and in vivo, ex vivo and in vitro experiments, we provide evidence for a crucial role of primary cilium-mediated signaling in long-range axon guidance. The primary cilium on the cell body of commissural neurons transduces long-range guidance signals sensed by growth cones navigating an intermediate target. In extension of our finding that Shh is required for the rostral turn of post-crossing commissural axons, we suggest a model implicating the primary cilium in Shh signaling upstream of a transcriptional change of axon guidance receptors, which in turn mediate the repulsive response to floorplate-derived Shh shown by post-crossing commissural axons.


Asunto(s)
Orientación del Axón , Axones , Cilios , Proteínas Hedgehog , Transducción de Señal , Cilios/metabolismo , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones , Axones/metabolismo , Conos de Crecimiento/metabolismo , Neuronas/metabolismo
5.
Development ; 150(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36794750

RESUMEN

During gonadal sex determination, the supporting cell lineage differentiates into Sertoli cells in males and pre-granulosa cells in females. Recently, single cell RNA-seq data have indicated that chicken steroidogenic cells are derived from differentiated supporting cells. This differentiation process is achieved by a sequential upregulation of steroidogenic genes and downregulation of supporting cell markers. The exact mechanism regulating this differentiation process remains unknown. We have identified TOX3 as a previously unreported transcription factor expressed in embryonic Sertoli cells of the chicken testis. TOX3 knockdown in males resulted in increased CYP17A1-positive Leydig cells. TOX3 overexpression in male and female gonads resulted in a significant decline in CYP17A1-positive steroidogenic cells. In ovo knockdown of the testis determinant DMRT1 in male gonads resulted in a downregulation of TOX3 expression. Conversely, DMRT1 overexpression caused an increase in TOX3 expression. Taken together, these data indicate that DMRT1-mediated regulation of TOX3 modulates expansion of the steroidogenic lineage, either directly, via cell lineage allocation, or indirectly, via signaling from the supporting to steroidogenic cell populations.


Asunto(s)
Pollos , Procesos de Determinación del Sexo , Animales , Embrión de Pollo , Masculino , Femenino , Pollos/genética , Linaje de la Célula , Factores de Transcripción/metabolismo , Gónadas/metabolismo , Testículo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Diferenciación Sexual/genética
6.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37665168

RESUMEN

Chicken embryos are a powerful and widely used animal model in developmental biology studies. Since the development of CRISPR technology, gene-edited chickens have been generated by transferring primordial germ cells (PGCs) into recipients after genetic modifications. However, low inheritance caused by competition between host germ cells and the transferred cells is a common complication and greatly reduces production efficiency. Here, we generated a gene-edited chicken, in which germ cells can be ablated in a drug-dependent manner, as recipients for gene-edited PGC transfer. We used the nitroreductase/metronidazole (NTR/Mtz) system for cell ablation, in which nitroreductase produces cytotoxic alkylating agents from administered metronidazole, causing cell apoptosis. The chicken Vasa homolog (CVH) gene locus was used to drive the expression of the nitroreductase gene in a germ cell-specific manner. In addition, a fluorescent protein gene, mCherry, was also placed in the CVH locus to visualize the PGCs. We named this system 'germ cell-specific autonomous removal induction' (gSAMURAI). gSAMURAI chickens will be an ideal recipient to produce offspring derived from transplanted exogenous germ cells.


Asunto(s)
Pollos , Metronidazol , Embrión de Pollo , Animales , Pollos/genética , Células Germinativas/metabolismo , Nitrorreductasas/metabolismo
7.
Development ; 150(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747104

RESUMEN

During neural circuit formation, axons navigate from one intermediate target to the next, until they reach their final target. At intermediate targets, axons switch from being attracted to being repelled by changing the guidance receptors on the growth cone surface. For smooth navigation of the intermediate target and the continuation of their journey, the switch in receptor expression has to be orchestrated in a precisely timed manner. As an alternative to changes in expression, receptor function could be regulated by phosphorylation of receptors or components of signaling pathways. We identified Cables1 as a linker between floor-plate exit of commissural axons, regulated by Slit/Robo signaling, and the rostral turn of post-crossing axons, regulated by Wnt/Frizzled signaling. Cables1 localizes ß-catenin, phosphorylated at tyrosine 489 by Abelson kinase, to the distal axon, which in turn is necessary for the correct navigation of post-crossing commissural axons in the developing chicken spinal cord.


Asunto(s)
Orientación del Axón , Axones , Orientación del Axón/fisiología , Axones/metabolismo , Conos de Crecimiento , Médula Espinal/metabolismo , Vía de Señalización Wnt , Animales , Pollos
8.
Proc Natl Acad Sci U S A ; 120(8): e2216641120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36780517

RESUMEN

Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.


Asunto(s)
Centrómero , Pollos , Animales , Masculino , Pollos/genética , Centrómero/genética , Telómero , Heterocromatina , Secuencias Repetidas en Tándem
9.
Dev Biol ; 516: 35-46, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39074652

RESUMEN

The mechanosensory hair cell of the vertebrate inner ear responds to the mechanical deflections that result from hearing or change in the acceleration due to gravity, to allow us to perceive and interpret sounds, maintain balance and spatial orientation. In mammals, ototoxic compounds, disease, and acoustic trauma can result in damage and extrusion of hair cells, without replacement, resulting in hearing loss. In contrast, non-mammalian vertebrates can regenerate sensory hair cells. Upon damage, hair cells are extruded and an associated cell type, the supporting cell is transformed into a hair cell. The mechanisms that can trigger regeneration are not known. Using mosaic deletion of the hair cell master gene, Atoh1, in the embryonic avian inner ear, we find that despite hair cells depletion at E9, by E12, hair cell number is restored in sensory epithelium. Our study suggests a homeostatic mechanism can restores hair cell number in the basilar papilla, that is activated when juxtracrine signalling is disrupted. Restoration of hair cell numbers during development may mirror regenerative processes, and our work provides insights into the mechanisms that trigger regeneration.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Ciliadas Auditivas , Homeostasis , Animales , Células Ciliadas Auditivas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Pollo , Epitelio/metabolismo , Eliminación de Gen , Regeneración/fisiología , Recuento de Células , Mosaicismo , Pollos , Órgano Espiral/embriología , Órgano Espiral/metabolismo
10.
Dev Biol ; 517: 13-23, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245159

RESUMEN

The choice of fixation method significantly impacts tissue morphology and visualization of gene expression and proteins after in situ hybridization chain reaction (HCR) or immunohistochemistry (IHC), respectively. In this study, we compared the effects of paraformaldehyde (PFA) and trichloroacetic acid (TCA) fixation techniques prior to HCR and IHC on chicken embryos. Our findings underscore the importance of optimizing fixation methods for accurate visualization and subsequent interpretation of HCR and IHC results, with implications for probe and antibody validation and tissue-specific protein localization studies. We found that TCA fixation resulted in larger and more circular nuclei and neural tubes compared to PFA fixation. Additionally, TCA fixation altered the subcellular fluorescence signal intensity of various proteins, including transcription factors, cytoskeletal proteins, and cadherins. Notably, TCA fixation revealed protein signals in tissues that may be inaccessible with PFA fixation. In contrast, TCA fixation proved ineffective for mRNA visualization. These results highlight the need for optimization of fixation protocols depending on the target and model system, emphasizing the importance of methodological considerations in biological analyses.

11.
Dev Biol ; 507: 20-33, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38154769

RESUMEN

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Asunto(s)
Ectodermo , Cresta Neural , Embrión de Pollo , Animales , Ectodermo/metabolismo , Cresta Neural/metabolismo , Pollos/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Uniones Estrechas/metabolismo
12.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35980364

RESUMEN

The gut has been a central subject of organogenesis since Caspar Friedrich Wolff's seminal 1769 work 'De Formatione Intestinorum'. Today, we are moving from a purely genetic understanding of cell specification to a model in which genetics codes for layers of physical-mechanical and electrical properties that drive organogenesis such that organ function and morphogenesis are deeply intertwined. This Review provides an up-to-date survey of the extrinsic and intrinsic mechanical forces acting on the embryonic vertebrate gut during development and of their role in all aspects of intestinal morphogenesis: enteric nervous system formation, epithelium structuring, muscle orientation and differentiation, anisotropic growth and the development of myogenic and neurogenic motility. I outline numerous implications of this biomechanical perspective in the etiology and treatment of pathologies, such as short bowel syndrome, dysmotility, interstitial cells of Cajal-related disorders and Hirschsprung disease.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Diferenciación Celular , Sistema Nervioso Entérico/fisiología , Humanos , Morfogénesis/genética , Organogénesis/fisiología
13.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36093878

RESUMEN

The lateral plate mesoderm (LPM) is a transient tissue that produces a diverse range of differentiated structures, including the limbs. However, the molecular mechanisms that drive early LPM specification and development are poorly understood. In this study, we use single-cell transcriptomics to define the cell-fate decisions directing LPM specification, subdivision and early initiation of the forelimb mesenchyme in chicken embryos. We establish a transcriptional atlas and global cell-cell signalling interactions in progenitor, transitional and mature cell types throughout the developing forelimb field. During LPM subdivision, somatic and splanchnic LPM fate is achieved through activation of lineage-specific gene modules. During the earliest stages of limb initiation, we identify activation of TWIST1 in the somatic LPM as a putative driver of limb bud epithelial-to-mesenchymal transition. Furthermore, we define a new role for BMP signalling during early limb development, revealing that it is necessary for inducing a somatic LPM fate and initiation of limb outgrowth, potentially through activation of TBX5. Together, these findings provide new insights into the mechanisms underlying LPM development, somatic LPM fate choice and early initiation of the vertebrate limb.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mesodermo , Animales , Linaje de la Célula , Embrión de Pollo , Miembro Anterior , Esbozos de los Miembros
14.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35132990

RESUMEN

Despite previous intensive investigations on epiblast cell migration in avian embryos during primitive streak development before stage (st.) 4, this migration at later stages of brain development has remained uninvestigated. By live imaging of epiblast cells sparsely labeled with green fluorescence protein, we investigated anterior epiblast cell migration to form individual brain portions. Anterior epiblast cells from a broad area migrated collectively towards the head axis during st. 5-7 at a rate of 70-110 µm/h, changing directions from diagonal to parallel and forming the brain portions and abutting head ectoderm. This analysis revised the previously published head portion precursor map in anterior epiblasts at st. 4/5. Grafting outside the brain precursor region of mCherry-expressing nodes producing anterior mesendoderm (AME) or isolated AME tissues elicited new cell migration towards ectopic AME tissues. These locally convergent cells developed into secondary brains with portions that depended on the ectopic AME position in the anterior epiblast. Thus, anterior epiblast cells are bipotent for brain/head ectoderm development with given brain portion specificities. A brain portion potential map is proposed, also accounting for previous observations.


Asunto(s)
Gástrula , Estratos Germinativos , Animales , Aves , Encéfalo , Movimiento Celular , Ectodermo/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(45): e2214344119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322747

RESUMEN

Conventional avian genome editing is mediated by isolation, culture, and genome editing of primordial germ cells (PGCs); screening and propagating the genome-edited PGCs; and transplantation of the PGCs into recipient embryos. The PGC-mediated procedures, however, are technically difficult, and therefore, the conventional method has previously been utilized only in chickens. Here, we generated germline mosaic founder chicken and duck lines without the PGC-mediated procedures by injecting an adenovirus containing the CRISPR-Cas9 system into avian blastoderms. Genome-edited chicken and duck offspring produced from the founders carried different insertion or deletion mutations without mutations in the potential off-target sites. Our data demonstrate successful applications of the adenovirus-mediated method for production of genome-edited chicken and duck lines.


Asunto(s)
Pollos , Edición Génica , Animales , Edición Génica/métodos , Pollos/genética , Patos/genética , Sistemas CRISPR-Cas , Adenoviridae/genética , Células Germinativas
16.
BMC Biol ; 22(1): 131, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831263

RESUMEN

BACKGROUND: Fine characterization of gene expression patterns is crucial to understand many aspects of embryonic development. The chicken embryo is a well-established and valuable animal model for developmental biology. The period spanning from the third to sixth embryonic days (E3 to E6) is critical for many organ developments. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA-FISH) enables multiplex RNA detection in thick samples including embryos of various animal models. However, its use is limited by tissue opacity. RESULTS: We optimized HCR RNA-FISH protocol to efficiently label RNAs in whole mount chicken embryos from E3.5 to E5.5 and adapted it to ethyl cinnamate (ECi) tissue clearing. We show that light sheet imaging of HCR RNA-FISH after ECi clearing allows RNA expression analysis within embryonic tissues with good sensitivity and spatial resolution. Finally, whole mount immunofluorescence can be performed after HCR RNA-FISH enabling as exemplified to assay complex spatial relationships between axons and their environment or to monitor GFP electroporated neurons. CONCLUSIONS: We could extend the use of HCR RNA-FISH to older chick embryos by optimizing HCR RNA-FISH and combining it with tissue clearing and 3D imaging. The integration of immunostaining makes possible to combine gene expression with classical cell markers, to correlate expressions with morphological differentiation and to depict gene expressions in gain or loss of function contexts. Altogether, this combined procedure further extends the potential of HCR RNA-FISH technique for chicken embryology.


Asunto(s)
Hibridación Fluorescente in Situ , Animales , Embrión de Pollo , Hibridación Fluorescente in Situ/métodos , Técnica del Anticuerpo Fluorescente/métodos , Imagenología Tridimensional/métodos , ARN/metabolismo , ARN/genética , Regulación del Desarrollo de la Expresión Génica
17.
Genomics ; 116(1): 110754, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061480

RESUMEN

Dimorphism between male and female embryos has been demonstrated in many animal species, including chicken species. Likewise, extraembryonic membranes such as the chorioallantoic membrane (CAM) are likely to exhibit a sex-specific profile. Analysis of the previously published RNA-seq data of the chicken CAM sampled at two incubation times, revealed 783 differentially expressed genes between the CAM of male and female embryos. The expression of some of these genes is sex-dependant only at one or other stage of development, while 415 genes are sex-dependant at both developmental stages. These genes include well-known sex-determining and sex-differentiation genes (DMRT1, HEGM, etc.), and are mainly located on sex chromosomes. This study provides evidence that gene expression of extra-embryonic membranes is differentially regulated between male and female embryos. As such, a better characterisation of associated mechanisms should facilitate the identification of new sex-specific biomarkers.


Asunto(s)
Pollos , Transcriptoma , Animales , Masculino , Femenino , Pollos/genética , Membrana Corioalantoides/metabolismo , Diferenciación Sexual/genética , Regulación del Desarrollo de la Expresión Génica
18.
Genesis ; 62(1): e23530, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37353984

RESUMEN

Sex is a biological variable important to consider in all biomedical experiments. However, doing so in avian embryos can be challenging as sex can be morphologically indistinguishable. Unlike humans, female birds are the heterogametic sex with Z and W sex chromosomes. The female-specific W chromosome has previously been identified in chick using a species-specific polymerase chain reaction (PCR) technique. We developed a novel reverse transcription quantitative PCR (RT-qPCR) technique that amplifies the W chromosome gene histidine triad nucleotide-binding protein W (HINTW) in chick, quail, and duck. Accuracy of the HINTW RT-qPCR primer set was confirmed in all three species using species-specific PCR, including a novel quail-specific HINTW PCR primer set. Bone development-related gene expression was then analyzed by sex in embryonic lower jaws of duck and quail, as adult duck beak size is known to be sexually dimorphic while quail beak size is not. Trends toward sex differences were found in duck gene expression but not in quail, as expected. With these novel RT-qPCR and PCR embryo sexing methods, sex of chick, quail, and duck embryos can now be assessed by either/both RNA and DNA, which facilitates analysis of sex as a biological variable in studies using these model organisms.


Asunto(s)
Pollos , Codorniz , Animales , Humanos , Femenino , Masculino , Codorniz/genética , Patos/genética , Maxilares
19.
Genesis ; 62(2): e23592, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38587195

RESUMEN

Mesenchymal stem cells (MSCs) derived from fetal membranes (FMs) have the potential to exhibit immunosuppression, improve blood flow, and increase capillary density during transplantation. In the field of medicine, opening up new avenues for disease treatment. Chicken embryo chorioallantoic membrane (CAM), as an important component of avian species FM structure, has become a stable tissue engineering material in vivo angiogenesis, drug delivery, and toxicology studies. Although it has been confirmed that chorionic mesenchymal stem cells (Ch-MSCs) can be isolated from the outer chorionic layer of FM, little is known about the biological characteristics of MSCs derived from chorionic mesodermal matrix of chicken embryos. Therefore, we evaluated the characteristics of MSCs isolated from chorionic tissues of chicken embryos, including cell proliferation ability, stem cell surface antigen, genetic stability, and in vitro differentiation potential. Ch-MSCs exhibited a broad spindle shaped appearance and could stably maintain diploid karyotype proliferation to passage 15 in vitro. Spindle cells were positive for multifunctional markers of MSCs (CD29, CD44, CD73, CD90, CD105, CD166, OCT4, and NANOG), while hematopoietic cell surface marker CD34, panleukocyte marker CD45, and epithelial cell marker CK19 were negative. In addition, chicken Ch-MSC was induced to differentiate into four types of mesodermal cells in vitro, including osteoblasts, chondrocytes, adipocytes, and myoblasts. Therefore, the differentiation potential of chicken Ch-MSC in vitro may have great potential in tissue engineering. In conclusion, chicken Ch-MSCs may be an excellent model cell for stem cell regenerative medicine and chorionic tissue engineering.


Asunto(s)
Pollos , Células Madre Mesenquimatosas , Animales , Embrión de Pollo , Membrana Corioalantoides , Diferenciación Celular/fisiología , Células Cultivadas
20.
Dev Biol ; 495: 1-7, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36565839

RESUMEN

The cardiac neural crest is a subpopulation of cells arising from the caudal hindbrain. The delaminated cardiac neural crest cells migrate to the heart using the CXCR/SDF1 chemokine signaling system. These cells contribute to the formation of the cardiovascular system, including the septation of the outflow tract, which is unique to these cells. Here, we investigated the effect of ectopic expression of the cardiac neural crest gene MafB on trunk neural crest cells. First, we found that MafB has the potential to activate its own cis-regulatory element in enteric and trunk neural crest cells but not in cranial neural crest cells. Forced expression of two cardiac neural crest genes, Ets1 and Sox8, together with or without MafB, induced ectopic Sox10E2 enhancer activity in the trunk region. Finally, we uncovered that the expression of MafB, Ets1 and Sox8 can induce ectopic CXCR4 expression in the trunk neural crest cells, resulting in acquisition of responsiveness to the SDF1 signal. These results demonstrate that MafB, Ets1 and Sox8 are critical components for generation of the identity of the cardiac neural crest, especially the cell migration property.


Asunto(s)
Sistema Cardiovascular , Cresta Neural , Cresta Neural/metabolismo , Corazón , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA