Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35632190

RESUMEN

There are many potential hazard sources along high-speed railways that threaten the safety of railway operation. Traditional ground search methods are failing to meet the needs of safe and efficient investigation. In order to accurately and efficiently locate hazard sources along the high-speed railway, this paper proposes a texture-enhanced ResUNet (TE-ResUNet) model for railway hazard sources extraction from high-resolution remote sensing images. According to the characteristics of hazard sources in remote sensing images, TE-ResUNet adopts texture enhancement modules to enhance the texture details of low-level features, and thus improve the extraction accuracy of boundaries and small targets. In addition, a multi-scale Lovász loss function is proposed to deal with the class imbalance problem and force the texture enhancement modules to learn better parameters. The proposed method is compared with the existing methods, namely, FCN8s, PSPNet, DeepLabv3, and AEUNet. The experimental results on the GF-2 railway hazard source dataset show that the TE-ResUNet is superior in terms of overall accuracy, F1-score, and recall. This indicates that the proposed TE-ResUNet can achieve accurate and effective hazard sources extraction, while ensuring high recall for small-area targets.


Asunto(s)
Tecnología de Sensores Remotos
2.
Sensors (Basel) ; 22(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458917

RESUMEN

Building contour extraction from high-resolution remote sensing images is a basic task for the reasonable planning of regional construction. Recently, building segmentation methods based on the U-Net network have become popular as they largely improve the segmentation accuracy by applying 'skip connection' to combine high-level and low-level feature information more effectively. Meanwhile, researchers have demonstrated that introducing an attention mechanism into U-Net can enhance local feature expression and improve the performance of building extraction in remote sensing images. In this paper, we intend to explore the effectiveness of the primeval attention gate module and propose the novel Attention Gate Module (AG) based on adjusting the position of 'Resampler' in an attention gate to Sigmoid function for a building extraction task, and a novel Attention Gates U network (AGs-Unet) is further proposed based on AG, which can automatically learn different forms of building structures in high-resolution remote sensing images and realize efficient extraction of building contour. AGs-Unet integrates attention gates with a single U-Net network, in which a series of attention gate modules are added into the 'skip connection' for suppressing the irrelevant and noisy feature responses in the input image to highlight the dominant features of the buildings in the image. AGs-Unet improves the feature selection of the attention map to enhance the ability of feature learning, as well as paying attention to the feature information of small-scale buildings. We conducted the experiments on the WHU building dataset and the INRIA Aerial Image Labeling dataset, in which the proposed AGs-Unet model is compared with several classic models (such as FCN8s, SegNet, U-Net, and DANet) and two state-of-the-art models (such as PISANet, and ARC-Net). The extraction accuracy of each model is evaluated by using three evaluation indexes, namely, overall accuracy, precision, and intersection over union. Experimental results show that the proposed AGs-Unet model can improve the quality of building extraction from high-resolution remote sensing images effectively in terms of prediction performance and result accuracy.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Tecnología de Sensores Remotos
3.
Sensors (Basel) ; 21(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062917

RESUMEN

Accurate and up-to-date road network information is very important for the Geographic Information System (GIS) database, traffic management and planning, automatic vehicle navigation, emergency response and urban pollution sources investigation. In this paper, we use vector field learning to extract roads from high resolution remote sensing imaging. This method is usually used for skeleton extraction in nature image, but seldom used in road extraction. In order to improve the accuracy of road extraction, three vector fields are constructed and combined respectively with the normal road mask learning by a two-task network. The results show that all the vector fields are able to significantly improve the accuracy of road extraction, no matter the field is constructed in the road area or completely outside the road. The highest F1 score is 0.7618, increased by 0.053 compared with using only mask learning.

4.
Sensors (Basel) ; 20(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155935

RESUMEN

In this paper, we consider building extraction from high spatial resolution remote sensing images. At present, most building extraction methods are based on artificial features. However, the diversity and complexity of buildings mean that building extraction methods still face great challenges, so methods based on deep learning have recently been proposed. In this paper, a building extraction framework based on a convolution neural network and edge detection algorithm is proposed. The method is called Mask R-CNN Fusion Sobel. Because of the outstanding achievement of Mask R-CNN in the field of image segmentation, this paper improves it and then applies it in remote sensing image building extraction. Our method consists of three parts. First, the convolutional neural network is used for rough location and pixel level classification, and the problem of false and missed extraction is solved by automatically discovering semantic features. Second, Sobel edge detection algorithm is used to segment building edges accurately so as to solve the problem of edge extraction and the integrity of the object of deep convolutional neural networks in semantic segmentation. Third, buildings are extracted by the fusion algorithm. We utilize the proposed framework to extract the building in high-resolution remote sensing images from Chinese satellite GF-2, and the experiments show that the average value of IOU (intersection over union) of the proposed method was 88.7% and the average value of Kappa was 87.8%, respectively. Therefore, our method can be applied to the recognition and segmentation of complex buildings and is superior to the classical method in accuracy.

5.
Sensors (Basel) ; 20(16)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764226

RESUMEN

Spatially location and working status of pollution sources are very important pieces of information for environment protection. Waste gas produced by fossil fuel consumption in the industry is mainly discharged to the atmosphere through a chimney. Therefore, detecting the distribution of chimneys and their working status is of great significance to urban environment monitoring and environmental governance. In this paper, we use an open access dataset BUAA-FFPP60 and the faster regions with convolutional neural network (Faster R-CNN) algorithm to train the preliminarily detection model. Then, the trained model is used to detect the chimneys in three high-resolution remote sensing images of Google Maps, which is located in Tangshan city. The results show that a large number of false positive targets are detected. For working chimney detection, the recall rate is 77.27%, but the precision is only 40.47%. Therefore, two spatial analysis methods, the digital terrain model (DTM) filtering, and main direction test are introduced to remove the false chimneys. The DTM is generated by ZiYuan-3 satellite images and then registered to the high-resolution image. We set an elevation threshold to filter the false positive targets. After DTM filtering, we use principle component analysis (PCA) to calculate the main direction of each target image slice, and then use the main direction to remove false positive targets further. The results show that by using the combination of DTM filtering and main direction test, more than 95% false chimneys can be removed and, therefore, the detection precision is significantly increased.

6.
Sensors (Basel) ; 20(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316439

RESUMEN

For earthquake disaster assessment using remote sensing (RS), multisource image registration is an important step. However, severe earthquakes will increase the deformation between the remote sensing images acquired before and after the earthquakes on different platforms. Traditional image registration methods can hardly meet the requirements of accuracy and efficiency of image registration of post-earthquake RS images used for disaster assessment. Therefore, an improved image registration method was proposed for the registration of multisource high-resolution remote sensing images. The proposed method used the combination of the Shi_Tomasi corner detection algorithm and scale-invariant feature transform (SIFT) to detect tie points from image patches obtained by an image partition strategy considering geographic information constraints. Then, the random sample consensus (RANSAC) and greedy algorithms were employed to remove outliers and redundant matched tie points. Additionally, a pre-earthquake RS image database was constructed using pre-earthquake high-resolution RS images and used as the references for image registration. The performance of the proposed method was evaluated using three image pairs covering regions affected by severe earthquakes. It was shown that the proposed method provided higher accuracy, less running time, and more tie points with a more even distribution than the classic SIFT method and the SIFT method using the same image partitioning strategy.

7.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825587

RESUMEN

Recently, there have been rapid advances in high-resolution remote sensing image retrieval, which plays an important role in remote sensing data management and utilization. For content-based remote sensing image retrieval, low-dimensional, representative and discriminative features are essential to ensure good retrieval accuracy and speed. Dimensionality reduction is one of the important solutions to improve the quality of features in image retrieval, in which LargeVis is an effective algorithm specifically designed for Big Data visualization. Here, an extended LargeVis (E-LargeVis) dimensionality reduction method for high-resolution remote sensing image retrieval is proposed. This can realize the dimensionality reduction of single high-dimensional data by modeling the implicit mapping relationship between LargeVis high-dimensional data and low-dimensional data with support vector regression. An effective high-resolution remote sensing image retrieval method is proposed to obtain stronger representative and discriminative deep features. First, the fully connected layer features are extracted using a channel attention-based ResNet50 as a backbone network. Then, E-LargeVis is used to reduce the dimensionality of the fully connected features to obtain a low-dimensional discriminative representation. Finally, L2 distance is computed for similarity measurement to realize the retrieval of high-resolution remote sensing images. The experimental results on four high-resolution remote sensing image datasets, including UCM, RS19, RSSCN7, and AID, show that for various convolutional neural network architectures, the proposed E-LargeVis can effectively improve retrieval performance, far exceeding other dimensionality reduction methods.

8.
Sensors (Basel) ; 17(9)2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28914787

RESUMEN

Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features.

9.
Mar Pollut Bull ; 87(1-2): 88-97, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25152183

RESUMEN

Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas.


Asunto(s)
Estuarios , Ríos , Contaminantes Químicos del Agua/química , Contaminación Química del Agua/prevención & control , China , Monitoreo del Ambiente/métodos , Modelos Teóricos , Nitrógeno/análisis , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA