Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136544

RESUMEN

Hematopoietic Stem and Progenitor Cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interaction with osteoblast and endothelial cell promote asymmetric division of human HSPC. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of CD34 differentiation marker. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.

2.
Annu Rev Biomed Eng ; 26(1): 441-473, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959386

RESUMEN

Multicellular model organisms, such as Drosophila melanogaster (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise. We discuss recent advances in microtechnological systems developed for small model organisms using D. melanogaster as an example. We critically analyze the state of the field by comparing the systems produced for different applications. Additionally, we suggest design guidelines, operational tips, and new research directions based on the technical and knowledge gaps in the literature. This review aims to foster interdisciplinary work by helping engineers to familiarize themselves with model organisms while presenting the most recent advances in microengineering strategies to biologists.


Asunto(s)
Drosophila melanogaster , Animales , Microtecnología/métodos , Modelos Animales , Diseño de Equipo , Nanotecnología/métodos
3.
Proc Natl Acad Sci U S A ; 119(46): e2208294119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343235

RESUMEN

Microtubules are essential cytoskeletal polymers that exhibit stochastic switches between tubulin assembly and disassembly. Here, we examine possible mechanisms for these switches, called catastrophes and rescues. We formulate a four-state Monte Carlo model, explicitly considering two biochemical and two conformational states of tubulin, based on a recently conceived view of microtubule assembly with flared ends. The model predicts that high activation energy barriers for lateral tubulin interactions can cause lagging of curled protofilaments, leading to a ragged appearance of the growing tip. Changes in the extent of tip raggedness explain some important but poorly understood features of microtubule catastrophe: weak dependence on tubulin concentration and an increase in its probability over time, known as aging. The model predicts a vanishingly rare frequency of spontaneous rescue unless patches of guanosine triphosphate tubulin are artificially embedded into microtubule lattice. To test our model, we used in vitro reconstitution, designed to minimize artifacts induced by microtubule interaction with nearby surfaces. Microtubules were assembled from seeds overhanging from microfabricated pedestals and thus well separated from the coverslip. This geometry reduced the rescue frequency and the incorporation of tubulins into the microtubule shaft compared with the conventional assay, producing data consistent with the model. Moreover, the rescue positions of microtubules nucleated from coverslip-immobilized seeds displayed a nonexponential distribution, confirming that coverslips can affect microtubule dynamics. Overall, our study establishes a unified theory accounting for microtubule assembly with flared ends, a tip structure-dependent catastrophe frequency, and a microtubule rescue frequency dependent on lattice damage and repair.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Guanosina Trifosfato/metabolismo , Método de Montecarlo
4.
Nano Lett ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146458

RESUMEN

The microtubule-kinesin biomolecular motor system, which is vital for cellular function, holds significant promise for nanotechnological applications. In vitro gliding assays have demonstrated the ability to transport microcargo by propelling microtubules across kinesin-coated surfaces. However, the uncontrolled directional motion of microtubules has posed significant challenges, limiting the system's application for precise cargo delivery. Microfluidic devices provide a means to direct microtubule movement through their geometric features. Norland Optical Adhesive (NOA) is valued for its mold-free application in microfluidic device fabrication; however, microtubules often climb up channel walls, limiting controlled movement. In this study, a surface passivation method for NOA is introduced, using polyethylene glycol via a thiol-ene click reaction. This technique significantly improved the directional control and concentration of microtubules within NOA microchannels. This approach presents new possibilities for the precise application of biomolecular motors in nanotechnology, enabling advancements in the design of microfluidic systems for complex biomolecular manipulations.

5.
Nano Lett ; 24(27): 8361-8368, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38940365

RESUMEN

Cell migration requires the interplay among diverse migration patterns. The molecular basis of distinct migration programs is undoubtedly vital but not fully explored. Meanwhile, the lack of tools for investigating spontaneous migratory plasticity in a single living cell also adds to the hindrance. Here, we developed a micro/nanotechnology-enabled single-cell analytical platform to achieve coherent monitoring of spontaneous migratory pattern and signaling molecules. Via the platform, we unveiled a previously unappreciated STAT3 regionalization on the multifunctional regulations of migration. Specifically, nuclear STAT3 is associated with amoeboid migration, while cytoplasmic STAT3 promotes mesenchymal movement. Opposing effects of JAK2 multisite phosphorylation shape its response to STAT3 distribution in a dynamic and antagonistic manner, eventually triggering a reversible amoeboid-mesenchymal transition. Based on the above results, bioinformatics further revealed a possible downstream regulator of nucleocytoplasmic STAT3. Thus, our platform, as an exciting technological advance in single-cell migration research, can provide in-depth mechanism interpretations of tumor metastasis and progression.


Asunto(s)
Movimiento Celular , Núcleo Celular , Janus Quinasa 2 , Factor de Transcripción STAT3 , Análisis de la Célula Individual , Factor de Transcripción STAT3/metabolismo , Humanos , Núcleo Celular/metabolismo , Janus Quinasa 2/metabolismo , Fosforilación , Transducción de Señal , Citoplasma/metabolismo , Animales
6.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34345912

RESUMEN

Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.


Asunto(s)
Biología Evolutiva/métodos , Animales , Humanos
7.
Small ; : e2400179, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031523

RESUMEN

With the rapid development of micro/nano machining, there is an elevated demand for high-performance microdevices with high reliability and low cost. Due to their outstanding electrochemical, optical, electrical, and mechanical performance, carbon materials are extensively utilized in constructing microdevices for energy storage, sensing, and optoelectronics. Carbon micro/nano machining is fundamental in carbon-based intelligent microelectronics, multifunctional integrated microsystems, high-reliability portable/wearable consumer electronics, and portable medical diagnostic systems. Despite numerous reviews on carbon materials, a comprehensive overview is lacking that systematically encapsulates the development of high-performance microdevices based on carbon micro/nano structures, from structural design to manufacturing strategies and specific applications. This review focuses on the latest progress in carbon micro/nano machining toward miniaturized device, including structural engineering, large-scale fabrication, and performance optimization. Especially, the review targets an in-depth evaluation of carbon-based micro energy storage devices, microsensors, microactuators, miniaturized photoresponsive and electromagnetic interference shielding devices. Moreover, it highlights the challenges and opportunities in the large-scale manufacturing of carbon-based microdevices, aiming to spark further exciting research directions and application prospectives.

8.
Electrophoresis ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177276

RESUMEN

A miniaturized electrospray interface consisting of a microfluidic nanosprayer and nanospray module is reported in the presented short communication. The nanosprayer was fabricated using silicon (Si) technology suitable for cost-efficient high-volume mass production. The nanospray module enabled the positioning of the nanosprayer in front of a mass spectrometry entrance and its coupling with capillary electrophoresis based on the liquid junction principle. A case study of top-down and bottom-up proteomic analyses of intact cytochrome c and its tryptic digest demonstrates the practical applicability of the developed interface.

9.
Anal Bioanal Chem ; 416(9): 2031-2037, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37470814

RESUMEN

3D printers utilize cutting-edge technologies to create three-dimensional objects and are attractive tools for engineering compact microfluidic platforms with complex architectures for chemical and biochemical analyses. 3D printing's popularity is associated with the freedom of creating intricate designs using inexpensive instrumentation, and these tools can produce miniaturized platforms in minutes, facilitating fabrication scaleup. This work discusses key challenges in producing three-dimensional microfluidic structures using currently available 3D printers, addressing considerations about printer capabilities and software limitations encountered in the design and processing of new architectures. This article further communicates the benefits of using three-dimensional structures, including the ability to scalably produce miniaturized analytical systems and the possibility of combining them with multiple processes, such as mixing, pumping, pre-concentration, and detection. Besides increasing analytical applicability, such three-dimensional architectures are important in the eventual design of commercial devices since they can decrease user interferences and reduce the volume of reagents or samples required, making assays more reliable and rapid. Moreover, this manuscript provides insights into research directions involving 3D-printed microfluidic devices. Finally, this work offers an outlook for future developments to provide and take advantage of 3D microfluidic functionality in 3D printing. Graphical abstract Creating three-dimensional microfluidic structures using 3D printing will enable key advances and novel applications in (bio)chemical analysis.

10.
Mikrochim Acta ; 191(3): 171, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430344

RESUMEN

This paper focuses on 3D printing using digital light processing (DLP) to create microchannel devices with inner diameters of 100, 200, and 500 µm and cater flow-through applications within the realm of analytical chemistry, in particular high-pressure liquid chromatographic separations. Effects of layer thickness and exposure time on channel dimensions and surface roughness were systematically investigated. Utilizing a commercially accessible 3D printer and acrylate resin formulation, we fabricated 100-500 µm i.d. squared and circular channel designs minimizing average surface roughness (< 20%) by applying a 20-µm layer thickness and exposure times ranging from 1.1 to 0.7 s. Pressure resistance was measured by encasing microdevices in an aluminum chip holder that integrated flat-bottom polyetheretherketon (PEEK) nanoports allowing to establish the micro-to-macro interface to the HPLC instrument. After thermal post-curing and finetuning the clamping force of the chip holder, a maximum pressure resistance of 650 bar (1.5% RSD) was reached (n = 3). A polymer monolithic support structure was successfully synthesized in situ with the confines of a 500 µm i.d. 3D printed microchannel. A proof-of-concept of a reversed-phase chromatographic gradient separation of intact proteins is demonstrated using an aqueous-organic mobile-phase with isopropanol as organic modifier.

11.
Mikrochim Acta ; 191(9): 554, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168870

RESUMEN

Nano- and micro-carriers of therapeutic molecules offer numerous advantages for drug delivery, and the shape of these particles plays a vital role in their biodistribution and their interaction with cells. However, analysing how microparticles are taken up by cells presents methodological challenges. Qualitative methods like microscopy provide detailed imaging but are time-consuming, whereas quantitative methods such as flow cytometry enable high-throughput analysis but struggle to differentiate between internalised and surface-bound particles. Instead, imaging flow cytometry combines the best of both worlds, offering high-resolution imaging with the efficiency of flow cytometry, allowing for quantitative analysis at the single-cell level. This study focuses on fluorescently labelled silicon oxide microchips of various morphologies but related surface areas and volumes: rectangular cuboids and apex-truncated square pyramid microchips fabricated using photolithography techniques, offering a reliable basis for comparison with the more commonly studied spherical particles. Imaging flow cytometry was utilised to evaluate the effect of particle shape on cellular uptake using RAW 264.7 cells and revealed phagocytosis of particles with all shapes. Increasing the particle dose enhanced the uptake, while macrophage stimulation had minimal effect. Using a ratio particle:cell of 10:1 cuboids and spheres showed an uptake rate of approximately 50%, in terms of the percentage of cells with internalised particles, and the average number of particles taken up per cell ranging from about 1-1.5 particle/cell for all the different shapes. This study indicates how differently shaped micro-carriers offer insights into particle uptake variations, demonstrating the potential of non-spherical micro-carriers for precise drug delivery applications.


Asunto(s)
Citometría de Flujo , Dióxido de Silicio , Ratones , Animales , Células RAW 264.7 , Dióxido de Silicio/química , Fagocitosis , Tamaño de la Partícula , Colorantes Fluorescentes/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos
12.
Mikrochim Acta ; 191(5): 292, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687361

RESUMEN

Since its introduction in 2014, laser-induced graphene (LIG) from commercial polymers has been gaining interests in both academic and industrial sectors. This can be clearly seen from its mass adoption in various fields ranging from energy storage and sensing platforms to biomedical applications. LIG is a 3-dimensional, nanoporous graphene structure with highly tuneable electrical, physical, and chemical properties. LIG can be easily produced by single-step laser scribing at normal room temperature and pressure using easily accessible commercial level laser machines and materials. With the increasing demand for novel wearable devices for biomedical applications, LIG on flexible substrates can readily serve as a technological platform to be further developed for biomedical applications such as point-of-care (POC) testing and wearable devices for healthcare monitoring system. This review will provide a comprehensive grounding on LIG from its inception and fabrication mechanism to the characterization of its key functional properties. The exploration of biomedicals applications in the form of wearable and point-of-care devices will then be presented. Issue of health risk from accidental exposure to LIG will be covered. Then LIG-based wearable devices will be compared to devices of different materials. Finally, we discuss the implementation of Internet of Medical Things (IoMT) to wearable devices and explore and speculate on its potentials and challenges.


Asunto(s)
Grafito , Rayos Láser , Dispositivos Electrónicos Vestibles , Grafito/química , Humanos
13.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124061

RESUMEN

In experiments considering cell handling in microchannels, cell sedimentation in the storage container is a key problem because it affects the reproducibility of the experiments. Here, a simple and low-cost cell mixing device (CMD) is presented; the device is designed to prevent the sedimentation of cells in a syringe during their injection into a microfluidic channel. The CMD is based on a slider crank device made of 3D-printed parts that, combined with a permanent magnet, actuate a stir bar placed into the syringe containing the cells. By using A549 cell lines, the device is characterized in terms of cell viability (higher than 95%) in different mixing conditions, by varying the oscillation frequency and the overall mixing time. Then, a dedicated microfluidic experiment is designed to evaluate the injection frequency of the cells within a microfluidic chip. In the presence of the CMD, a higher number of cells are injected into the microfluidic chip with respect to the static conditions (2.5 times), proving that it contrasts cell sedimentation and allows accurate cell handling. For these reasons, the CMD can be useful in microfluidic experiments involving single-cell analysis.


Asunto(s)
Dispositivos Laboratorio en un Chip , Humanos , Células A549 , Supervivencia Celular , Técnicas Analíticas Microfluídicas/instrumentación , Magnetismo/instrumentación , Separación Celular/instrumentación , Diseño de Equipo , Análisis de la Célula Individual/instrumentación
14.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931725

RESUMEN

The design, fabrication and characterization of a cost-efficient oceanographic instrument with microfabricated sensors for measuring conductivity, temperature and depth of seawater are presented. Conductivity and temperature sensors were fabricated using MEMS technology, which allows for customized small footprints and low production costs. Dedicated electronics for reading, processing and storing acquired sensor data are described. The developed instrument enables the measurement of seawater conductivity in a range from 4 mS/cm to 70 mS/cm. The conductivity measurement is temperature-compensated in the range from 2 °C to 40 °C, with an accuracy of ±0.1 mS/cm. The temperature sensor's stability is 0.025 °C. The depth/pressure measurement range is up to 2000 m/200 bar, with a resolution of 0.1 bar. Temperature and conductivity sensor performance was assessed using laboratory equipment and designed electronics. The conductivity sensor was temperature-compensated to 0.01 mS/cm. The conductivity sensor electrode corrosion effect is presented below and was eliminated through adaptation of a signal acquisition circuit. Custom software was developed for monitoring critical conductivity sensor parameters (currents, voltages). A variation of 0.4% between cell conductance currents and voltages was established as a criterion for stable conductivity sensor operation.

15.
Sensors (Basel) ; 24(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065935

RESUMEN

Silver-based grating structures offer means for implementing low-cost, efficient grating couplers for use in surface plasmon resonance (SPR) sensors. One-dimensional grating structures with a fixed periodicity are confined to operate effectively within a single planar orientation. However, two-dimensional grating structures as well as grating structures with variable periodicity allow for the plasmon excitation angle to be seamlessly adjusted. This study demonstrates silver-based grating designs that allow for the plasmon excitation angle to be adjusted via rotation or beam position. The flexible angle adjustment opens up the possibility of developing SPR sensor designs with an expanded dynamic range and increased flexibility in sensing applications. The results demonstrate that efficient coupling into two diffraction orders is possible, which ultimately leads to an excitation angle range from 16° to 40° by rotating a single structure. The findings suggest a promising direction for the development of versatile and adaptable SPR sensing platforms with enhanced performance characteristics.

16.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732848

RESUMEN

MEMS electrostatic actuators can suffer from a high control voltage and a limited displacement range, which are made more prevalent by the pull-in effect. This study explores a tri-electrode topology to enable a reduction in the control voltage and explores the effect of various solid materials forming the space between the two underlying stationary electrodes. Employing solid dielectric material simplifies fabrication and can reduce the bottom primary electrode's fixed voltage. Through numerical analysis, different materials were examined to assess their impact. The results indicate that the primary electrode's fixed voltage can be reduced with an increase in the dielectric constant, however, with the consequence of reduced benefit to control voltage reduction. Additionally, charge analysis was conducted to compare the actuator's performance using air as the gap-spacing material versus solid materials, from the perspective of energy conservation. It was found that solid materials result in a higher accumulated charge, reducing the need for a high fixed voltage.

17.
Sensors (Basel) ; 24(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38894266

RESUMEN

This paper describes the design, fabrication, integration, characterization, and demonstration of a novel flexible double-sided curvature sensor array for use in soft robotics. The paper explores the performance and potential applications of a piezoresistive sensor array consisting of four gold strain gauges on a flexible polyimide (PI) substrate arranged in a Wheatstone bridge configuration. Multiple sensor strips were arranged like the fingers of a hand. Integrating Shape Memory Alloy (SMA) foils alongside the fingers was explored to mimic a human hand-gripping motion controlled with temperature, while curvature sensor array strips measure the resulting finger shapes. Moreover, object sensing in a flexible granular material gripper was demonstrated. The sensors were embedded within Polydimethylsiloxane (PDMS) to enhance their tactile feel and adhesive properties. The findings of this study are promising for future applications, particularly in robotics and prosthetics, as the ability to accurately mimic human hand movements and reconstruct sensor surfaces paves the way for robotic hand functionality.

18.
Nano Lett ; 23(14): 6727-6735, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37459599

RESUMEN

Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors. Based on the microscale cell squeeze system, we found the synergistic role of lamin A/C and vimentin in cell transition and migration under strong confinement. The dynamic variations in lamin A/C and vimentin expression establish a positive feedback loop in response to confinement, effectively promoting amoeboid migration by modulating nuclear deformability while ensuring cell viability. This work shed light on modulating cell response to microenvironments by altering the expression of lamin A/C and/or vimentin, which may be a more efficient way of inhibiting cancer metastasis.


Asunto(s)
Movimiento Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermedios , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vimentina/metabolismo , Humanos , Células HeLa
19.
Small ; 19(26): e2207917, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36942987

RESUMEN

The high throughput deposition of microscale objects with precise spatial arrangement represents a key step in microfabrication technology. This can be done by creating physical boundaries to guide the deposition process or using printing technologies; in both approaches, these microscale objects cannot be further modified after they are formed. The utilization of dynamic acoustic fields offers a novel approach to facilitate real-time reconfigurable miniaturized systems in a contactless manner, which can potentially be used in physics, chemistry, biology, as well as materials science. Here, the physical interactions of microscale objects in an acoustic pressure field are discussed and how to fabricate different acoustic trapping devices and how to tune the spatial arrangement of the microscale objects are explained. Moreover, different approaches that can dynamically modulate microscale objects in acoustic fields are presented, and the potential applications of the microarrays in biomedical engineering, chemical/biochemical sensing, and materials science are highlighted alongside a discussion of future research challenges.

20.
Small ; 19(27): e2206510, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929149

RESUMEN

Although hypodermic needles are a "gold standard" for transdermal drug delivery (TDD), microneedle (MN)-mediated TDD denotes an unconventional approach in which drug compounds are delivered via micron-size needles. Herein, an isotropic XeF2 dry etching process is explored to fabricate silicon-based solid MNs. A photolithographic process, including mask writing, UV exposure, and dry etching with XeF2 is employed, and the MN fabrication is successfully customized by modifying the CAD designs, photolithographic process, and etching conditions. This study enables fabrication of a very dense MNs (up to 1452 MNs cm-2 ) with height varying between 80 and 300 µm. Geometrical features are also assessed using scanning electron microscopy (SEM) and 3D laser scanning microscope. Roughness of the MNs are improved from 0.71 to 0.35 µm after titanium and chromium coating. Mechanical failure test is conducted using dynamic mechanical analyzer to determine displacement and stress/strain values. The coated MNs are subjected to less displacement (≈15 µm) upon the applied force. COMSOL Multiphysics analysis indicates that MNs are safe to use in real-life applications with no fracture. This technique also enables the production of MNs with distinct shape and dimensions. The optimized process provides a wide range of solid MN types to be utilized for epidermis targeting.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microtecnología , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Agujas , Microinyecciones , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA