Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Physiol ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340081

RESUMEN

We determined the role played by the transient receptor potential canonical 6 (TRPC6) channel in evoking the mechanical component of the exercise pressor reflex in male decerebrated Sprague-Dawley rats. TRPC6 channels were identified by quadruple-labelled (DiI, TRPC6, neurofilament-200 and peripherin) immunohistochemistry in dorsal root ganglion (DRG) cells innervating the triceps surae muscles (n = 12). The exercise pressor reflex was evoked by statically contracting the triceps surae muscles before and after injection of the TRPC6 antagonist BI-749327 (n = 11; 12 µg kg-1 ) or SAR7334 (n = 11; 7 µg kg-1 ) or the TRPC6 positive modulator C20 (n = 11; 18 µg kg-1 ). Similar experiments were conducted while the muscles were passively stretched (n = 8-12), a manoeuvre that isolated the mechanical component of the reflex. Blood pressure, tension, renal sympathetic nerve activity (RSNA) and blood flow were recorded. Of the DRG cells innervating the triceps surae muscles, 85% stained positive for the TRPC6 antigen, and 45% of those cells co-expressed neurofilament-200. Both TRPC6 antagonists decreased the reflex pressor responses to static contraction (-32 to -42%; P < 0.05) and to passive stretch (-35 to -52%; P < 0.05), whereas C20 increased these responses (55-65%; P < 0.05). In addition, BI-749327 decreased the peak and integrated RSNA responses to both static contraction (-39 to -43%; P < 0.05) and passive stretch (-56 to -62%; P < 0.05), whereas C20 increased the RSNA to passive stretch only. The onset latency of the decrease or increase in RSNA occurred within 2 s of the onset of the manoeuvres (P < 0.05). Collectively, our results show that TRPC6 plays a key role in evoking the mechanical component of the exercise pressor reflex. KEY POINTS: The exercise pressor reflex plays a key role in the sympathetic and haemodynamic responses to exercise. This reflex is composed of two components, namely the mechanoreflex and the metaboreflex. The receptors responsible for evoking the mechanoreflex are poorly documented. A good candidate for this function is the transient receptor potential canonical 6 (TRPC6) channel, which is activated by mechanical stimuli and expressed in dorsal root ganglia of rats. Using two TRPC6 antagonists and one positive modulator, we investigated the role played by TRPC6 in evoking the mechanoreflex in decerebrated rats. Blocking TRPC6 decreased the renal sympathetic and the pressor responses to both contraction and stretch, the latter being a manoeuvre that isolates the mechanoreflex. In contrast, the positive modulator increased the pressor reflex to contraction and stretch, in addition to the sympathetic response to stretch. Our results provide strong support for a role played by the TRPC6 channel in evoking the mechanoreflex.

2.
J Neurophysiol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319788

RESUMEN

Aging can cause the decline of balance ability, which can lead to increased falls and decreased mobility. This work aimed to discern differences in balance control between healthy older and younger adults. Foot force data of 38 older and 65 younger participants (older and younger than 60 years, respectively) were analyzed. To first determine whether the two groups exhibited any differences, this study incorporated the orientation of the foot-ground interaction force in addition to its point of application. Specifically, the frequency-dependence of the "intersection point" of the lines of actions of the foot-ground interaction forces were evaluated. Results demonstrated that, like the mean center-of-pressure speed, a traditionally-employed measure, the intersection-point analysis could distinguish between the two participant groups. Then, to further explore age-specific control strategies, simulations of standing balance were conducted. An optimal controller stabilized a double-inverted-pendulum model with torque-actuated ankle and hip joints corrupted with white noise. The experimental data were compared to the simulation results to identify the controller parameters that best described the human data. Older participants showed significantly more use of the ankle than hip compared to younger participants. Best-fit controller gains suggested increased preference for asymmetric inter-joint neural feedback, possibly to compensate for the effects of aging such as sarcopenia. These results underscore the advantages of the intersection-point analysis to quantify possible shifts in inter-joint control with age, thus highlighting its potential to be used as a balance assessment tool in research and clinical settings.

3.
J Neurophysiol ; 131(6): 1188-1199, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691529

RESUMEN

Prolonged inhibition of respiratory neural activity elicits a long-lasting increase in phrenic nerve amplitude once respiratory neural activity is restored. Such long-lasting facilitation represents a form of respiratory motor plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although facilitation also occurs in inspiratory intercostal nerve activity after diminished respiratory neural activity (iIMF), it is of shorter duration. Atypical PKC activity in the cervical spinal cord is necessary for iPMF and iIMF, but the site and specific isoform of the relevant atypical PKC are unknown. Here, we used RNA interference to test the hypothesis that the zeta atypical PKC isoform (PKCζ) within phrenic motor neurons is necessary for iPMF but PKCζ within intercostal motor neurons is unnecessary for transient iIMF. Intrapleural injections of siRNAs targeting PKCζ (siPKCζ) to knock down PKCζ mRNA within phrenic and intercostal motor neurons were made in rats. Control rats received a nontargeting siRNA (NTsi) or an active siRNA pool targeting a novel PKC isoform, PKCθ (siPKCθ), which is required for other forms of respiratory motor plasticity. Phrenic nerve burst amplitude and external intercostal (T2) electromyographic (EMG) activity were measured in anesthetized and mechanically ventilated rats exposed to 30 min of respiratory neural inactivity (i.e., neural apnea) created by modest hypocapnia (20 min) or a similar recording duration without neural apnea (time control). Phrenic burst amplitude was increased in rats treated with NTsi (68 ± 10% baseline) and siPKCθ (57 ± 8% baseline) 60 min after neural apnea vs. time control rats (-3 ± 3% baseline), demonstrating iPMF. In contrast, intrapleural siPKCζ virtually abolished iPMF (5 ± 4% baseline). iIMF was transient in all groups exposed to neural apnea; however, intrapleural siPKCζ attenuated iIMF 5 min after neural apnea (50 ± 21% baseline) vs. NTsi (97 ± 22% baseline) and siPKCθ (103 ± 20% baseline). Neural inactivity elevated the phrenic, but not intercostal, responses to hypercapnia, an effect that was blocked by siPKCζ. We conclude that PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient iIMF.NEW & NOTEWORTHY We report important new findings concerning the mechanisms regulating a form of spinal neuroplasticity elicited by prolonged inhibition of respiratory neural activity, inactivity-induced phrenic motor facilitation (iPMF). We demonstrate that the atypical PKC isoform PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient inspiratory intercostal facilitation. Our findings are novel and advance our understanding of mechanisms contributing to phrenic motor plasticity.


Asunto(s)
Neuronas Motoras , Nervio Frénico , Proteína Quinasa C , Ratas Sprague-Dawley , Animales , Nervio Frénico/fisiología , Proteína Quinasa C/metabolismo , Proteína Quinasa C/fisiología , Neuronas Motoras/fisiología , Masculino , Ratas , Plasticidad Neuronal/fisiología
4.
J Therm Biol ; 123: 103937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39111062

RESUMEN

Under simultaneous ambient temperature and postural stressors, integrated regional blood flow responses are required to maintain blood pressure and thermoregulatory homeostasis. The aim of the present study was to assess the effect of ambient temperature and body posture on regional regulation of microvascular blood flow, specifically in the arms and legs. Participants (N = 11) attended two sessions in which they experienced transient ambient conditions, in a climatic chamber. During each 60-min trial, ambient temperature increased from 15.7 (0.6) °C to 38.9 (0.6) °C followed by a linear decrease, and the participants were either standing or in a supine position throughout the trial; relative humidity in the chamber was maintained at 25.9 (6.6) %. Laser doppler flowmetry of the forearm (SkBFarm) and calf (SkBFcalf), and haemodynamic responses (heart rate, HR; stroke volume, SV; cardiac output, CO; blood pressure, BP), were measured continuously. Analyses of heart rate variability and wavelet transform were also conducted. SkBFarm increased significantly at higher ambient temperatures (p = 0.003), but not SkBFcalf. The standing posture caused lower overall SkBF in both regions throughout the protocol, regardless of temperature (p < 0.001). HR and BP were significantly elevated, and SV significantly lowered, in response to separate and combined effects of higher ambient temperatures and a standing position (all p < 0.05); CO remained unchanged. Mechanistic analyses identified greater sympathetic nerve activation, and higher calf myogenic activation at peak temperatures, in the standing condition. Mechanistically and functionally, arm vasculature responds to modulation from both thermoregulation and baroreceptor activity. The legs, meanwhile, are more sensitive to baroreflex regulatory mechanisms.


Asunto(s)
Frecuencia Cardíaca , Hemodinámica , Postura , Flujo Sanguíneo Regional , Humanos , Masculino , Adulto , Presión Sanguínea , Adulto Joven , Femenino , Temperatura , Regulación de la Temperatura Corporal , Pierna/irrigación sanguínea , Pierna/fisiología
5.
Semin Cell Dev Biol ; 116: 72-81, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33468420

RESUMEN

The sympathetic nervous system represents a critical mechanism for homoeostatic blood pressure regulation in humans. This review focuses on age-related alterations in neurocirculatory regulation in men and women by highlighting human studies that examined the relationship between muscle sympathetic nerve activity (MSNA) acquired by microneurography and circulatory variables (e.g., blood pressure, vascular resistance). We frame this review with epidemiological evidence highlighting sex-specific patterns in age-related blood pressure increases in developed nations. Indeed, young women exhibit lower blood pressure than men, but women demonstrate larger blood pressure increases with age, such that by about age 60 years, blood pressure is greater in women. Sympathetic neurocirculatory mechanisms contribute to sex differences in blood pressure rises with age. Muscle sympathetic nerve activity increases with age in both sexes, but women demonstrate greater age-related increases. The circulatory adjustments imposed by MSNA - referred to as neurovascular transduction or autonomic (sympathetic) support of blood pressure - differ in men and women. For example, whereas young men demonstrate a positive relationship between resting MSNA and vascular resistance, this relationship is absent in young women due to beta-2 adrenergic vasodilation, which offsets alpha-adrenergic vasoconstriction. However, post-menopausal women demonstrate a positive relationship between MSNA and vascular resistance due to a decline in beta-2 adrenergic vasodilatory mechanisms. Emerging data suggest that greater aerobic fitness appears to modulate neurocirculatory regulation, at least in young, healthy men and women. This review also highlights recent advances in microneurographic recordings of sympathetic action potential discharge, which may nuance our understanding of age-related alterations in sympathetic neurocirculatory regulation in humans.


Asunto(s)
Sistema Nervioso Simpático/fisiopatología , Envejecimiento , Femenino , Humanos , Masculino , Factores Sexuales
6.
J Physiol ; 601(23): 5241-5256, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37878364

RESUMEN

The role played by the transient receptor potential vanilloid 1 (TRPV1) channel on the thin fibre afferents evoking the exercise pressor reflex is controversial. To shed light on this controversy, we compared the exercise pressor reflex between newly developed TRPV1+/+ , TRPV1+/- and TRPV1-/- rats. Carotid arterial injection of capsaicin (0.5 µg), evoked significant pressor responses in TRPV1+/+ and TRPV1+/- rats, but not in TRPV1-/- rats. In acutely isolated dorsal root ganglion neurons innervating the gastrocnemius muscles, capsaicin evoked inward currents in neurons isolated from TRPV1+/+ and TRPV1+/- rats but not in neurons isolated from TRPV1-/- rats. The reflex was evoked by stimulating the tibial nerve in decerebrated rats whose femoral artery was either freely perfused or occluded. We found no difference between the reflex in the three groups of rats regardless of the patency of the femoral artery. For example, the peak pressor responses to contraction in TRPV1+/+ , TRPV1+/- and TRPV1-/- rats with patent femoral arteries averaged 17.1 ± 7.2, 18.9 ± 12.4 and 18.4 ± 8.6 mmHg, respectively. Stimulation of the tibial nerve after paralysis with pancuronium had no effect on arterial pressure, findings which indicated that the pressor responses to contraction were not caused by electrical stimulation of afferent tibial nerve axons. We also found that expression levels of acid-sensing ion channel 1 and endoperoxide 4 receptor in the L4 and 5 dorsal root ganglia were not upregulated in the TRPV1-/- rats. We conclude that TRPV1 is not needed to evoke the exercise pressor reflex in rats whose contracting muscles have either a patent or an occluded arterial blood supply. KEY POINTS: A reflex arising in contracting skeletal muscle contributes to the increases in arterial blood pressure, cardiac output and breathing evoked by exercise. The sensory arm of the reflex comprises both mechanoreceptors and metaboreceptors, of which the latter signals that blood flow to exercising muscle is not meeting its metabolic demand. The nature of the channel on the metaboreceptor sensing a mismatch between supply and demand is controversial; some believe that it is the transient receptor potential vanilloid 1 (TRPV1) channel. Using genetically engineered rats in which the TRPV1 channel is rendered non-functional, we have shown that it is not needed to evoke the metaboreflex.


Asunto(s)
Capsaicina , Canales de Potencial de Receptor Transitorio , Animales , Ratas , Presión Sanguínea , Capsaicina/farmacología , Arteria Femoral/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Ratas Sprague-Dawley , Reflejo/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo
7.
J Exp Biol ; 226(Suppl_1)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37083140

RESUMEN

Muscular hydrostats are organs composed entirely of packed arrays of incompressible muscles and lacking any skeletal support. Found in both vertebrates and invertebrates, they are of great interest for comparative biomechanics from engineering and evolutionary perspectives. The arms of cephalopods (e.g. octopus and squid) are particularly interesting muscular hydrostats because of their flexibility and ability to generate complex behaviors exploiting elaborate nervous systems. Several lines of evidence from octopus studies point to the use of both brain and arm-embedded motor control strategies that have evolved to simplify the complexities associated with the control of flexible and hyper-redundant limbs and bodies. Here, we review earlier and more recent experimental studies on octopus arm biomechanics and neural motor control. We review several dynamic models used to predict the kinematic characteristics of several basic motion primitives, noting the shortcomings of the current models in accounting for behavioral observations. We also discuss the significance of impedance (stiffness and viscosity) in controlling the octopus's motor behavior. These factors are considered in light of several new models of muscle biomechanics that could be used in future research to gain a better understanding of motor control in the octopus. There is also a need for updated models that encompass stiffness and viscosity for designing and controlling soft robotic arms. The field of soft robotics has boomed over the past 15 years and would benefit significantly from further progress in biomechanical and motor control studies on octopus and other muscular hydrostats.


Asunto(s)
Extremidades , Músculos , Octopodiformes , Animales , Fenómenos Biomecánicos , Extremidades/inervación , Extremidades/fisiología , Músculos/inervación , Músculos/fisiología , Octopodiformes/fisiología , Robótica , Cefalópodos/fisiología
8.
Sensors (Basel) ; 23(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38005519

RESUMEN

This work presents the fabrication and characterization of a triple-layered biomimetic muscle constituted by polypyrrole (PPy)-dodecylbenzenesulfonate (DBS)/adhesive tape/PPy-DBS demonstrating simultaneous sensing and actuation capabilities. The muscle was controlled by a neurobiologically inspired cortical neural network sending agonist and antagonist signals to the conducting polymeric layers. Experiments consisted of controlled voluntary movements of the free end of the muscle at angles of ±20°, ±30°, and ±40° while monitoring the muscle's potential response. Results show the muscle's potential varies linearly with applied current amplitude during actuation, enabling current sensing. A linear dependence between muscle potential and temperature enabled temperature sensing. Electrolyte concentration changes also induced exponential variations in the muscle's potential, allowing for concentration sensing. Additionally, the influence of the electric current density on the angular velocity, the electric charge density, and the desired angle was studied. Overall, the conducting polymer-based soft biomimetic muscle replicates properties of natural muscles, permitting simultaneous motion control, current, temperature, and concentration sensing. The integrated neural control system exhibits key features of biological motion regulation. This muscle actuator with its integrated sensing and control represents an advance for soft robotics, prosthetics, and biomedical devices requiring biomimetic multifunctionality.


Asunto(s)
Polímeros , Robótica , Biomimética/métodos , Pirroles , Músculos
9.
Entropy (Basel) ; 25(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37372244

RESUMEN

This paper focuses on the adaptive control problem of a class of uncertain time-delay nonlinear cyber-physical systems (CPSs) with both unknown time-varying deception attacks and full-state constraints. Since the sensors are disturbed by external deception attacks making the system state variables unknown, this paper first establishes a new backstepping control strategy based on compromised variables and uses dynamic surface techniques to solve the disadvantages of the huge computational effort of the backstepping technique, and then establishes attack compensators to mitigate the impact of unknown attack signals on the control performance. Second, the barrier Lyapunov function (BLF) is introduced to restrict the state variables. In addition, the unknown nonlinear terms of the system are approximated using radial basis function (RBF) neural networks, and the Lyapunov-Krasovskii function (LKF) is introduced to eliminate the influence of the unknown time-delay terms. Finally, an adaptive resilient controller is designed to ensure that the system state variables converge and satisfy the predefined state constraints, all signals of the closed-loop system are semi-globally uniformly ultimately bounded under the premise that the error variables converge to an adjustable neighborhood of origin. The numerical simulation experiments verify the validity of the theoretical results.

10.
J Physiol ; 600(1): 15-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34842285

RESUMEN

Understanding the contribution of the autonomic nervous system to cerebral blood flow (CBF) control is challenging, and interpretations are unclear. The identification of calcium channels and adrenoreceptors within cerebral vessels has led to common misconceptions that the function of these receptors and actions mirror those of the peripheral vasculature. This review outlines the fundamental differences and complex actions of cerebral autonomic activation compared with the peripheral circulation. Anatomical differences, including the closed nature of the cerebrovasculature, and differential adrenoreceptor subtypes, density, distribution and sensitivity, provide evidence that measures on peripheral sympathetic nerve activity cannot be extrapolated to the cerebrovasculature. Cerebral sympathetic nerve activity seems to act opposingly to the peripheral circulation, mediated at least in part by changes in intracranial pressure and cerebral blood volume. Additionally, heterogeneity in cerebral adrenoreceptor distribution highlights region-specific autonomic regulation of CBF. Compensatory chemo- and autoregulatory responses throughout the cerebral circulation, and interactions with parasympathetic nerve activity are unique features to the cerebral circulation. This crosstalk between sympathetic and parasympathetic reflexes acts to ensure adequate perfusion of CBF to rising and falling perfusion pressures, optimizing delivery of oxygen and nutrients to the brain, while attempting to maintain blood volume and intracranial pressure. Herein, we highlight the distinct similarities and differences between autonomic control of cerebral and peripheral blood flow, and the regional specificity of sympathetic and parasympathetic regulation within the cerebrovasculature. Future research directions are outlined with the goal to further our understanding of autonomic control of CBF in humans.


Asunto(s)
Sistema Nervioso Autónomo , Circulación Cerebrovascular , Presión Sanguínea , Encéfalo , Humanos , Sistema Nervioso Parasimpático , Sistema Nervioso Simpático
11.
J Neurophysiol ; 127(1): 1-15, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34817281

RESUMEN

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, mainly affecting people over 60 yr of age. Patients develop both classic symptoms (tremors, muscle rigidity, bradykinesia, and postural instability) and nonclassical symptoms (orthostatic hypotension, neuropsychiatric deficiency, sleep disturbances, and respiratory disorders). Thus, patients with PD can have a significantly impaired quality of life, especially when they do not have multimodality therapeutic follow-up. The respiratory alterations associated with this syndrome are the main cause of mortality in PD. They can be classified as peripheral when caused by disorders of the upper airways or muscles involved in breathing and as central when triggered by functional deficits of important neurons located in the brainstem involved in respiratory control. Currently, there is little research describing these disorders, and therefore, there is no well-established knowledge about the subject, making the treatment of patients with respiratory symptoms difficult. In this review, the history of the pathology and data about the respiratory changes in PD obtained thus far will be addressed.


Asunto(s)
Enfermedad de Parkinson/fisiopatología , Trastornos Respiratorios/fisiopatología , Humanos , Enfermedad de Parkinson/complicaciones , Trastornos Respiratorios/etiología
12.
J Neurophysiol ; 127(1): 173-187, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34879209

RESUMEN

The influence of proprioceptive feedback on muscle activity during isometric tasks is the subject of conflicting studies. We performed an isometric knee extension task experiment based on two common clinical tests for mobility and flexibility. The task was carried out at four preset angles of the knee, and we recorded from five muscles for two different hip positions. We applied muscle synergy analysis using nonnegative matrix factorization on surface electromyograph recordings to identify patterns in the data that changed with internal knee angle, suggesting a link between proprioception and muscle activity. We hypothesized that such patterns arise from the way proprioceptive and cortical signals are integrated in neural circuits of the spinal cord. Using the MIIND neural simulation platform, we developed a computational model based on current understanding of spinal circuits with an adjustable afferent input. The model produces the same synergy trends as observed in the data, driven by changes in the afferent input. To match the activation patterns from each knee angle and position of the experiment, the model predicts the need for three distinct inputs: two to control a nonlinear bias toward the extensors and against the flexors, and a further input to control additional inhibition of rectus femoris. The results show that proprioception may be involved in modulating muscle synergies encoded in cortical or spinal neural circuits.NEW & NOTEWORTHY The role of sensory feedback in motor control when limbs are held in a fixed position is disputed. We performed a novel experiment involving fixed position tasks based on two common clinical tests. We identified patterns of muscle activity during the tasks that changed with different leg positions and then inferred how sensory feedback might influence the observations. We developed a computational model that required three distinct inputs to reproduce the activity patterns observed experimentally. The model provides a neural explanation for how the activity patterns can be changed by sensory feedback.


Asunto(s)
Retroalimentación Sensorial/fisiología , Actividad Motora/fisiología , Músculo Esquelético/fisiología , Red Nerviosa/fisiología , Propiocepción/fisiología , Médula Espinal/fisiología , Adolescente , Adulto , Electromiografía , Femenino , Humanos , Rodilla/fisiología , Masculino , Modelos Biológicos , Adulto Joven
13.
Int J Mol Sci ; 23(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628347

RESUMEN

We describe and analyze a computational model of neural circuits in the mammalian spinal cord responsible for generating and shaping locomotor-like oscillations. The model represents interacting populations of spinal neurons, including the neurons that were genetically identified and characterized in a series of previous experimental studies. Here, we specifically focus on the ipsilaterally projecting V1 interneurons, their possible role in the spinal locomotor circuitry, and their involvement in the generation of locomotor oscillations. The proposed connections of these neurons and their involvement in different neuronal pathways in the spinal cord allow the model to reproduce the results of optogenetic manipulations of these neurons under different experimental conditions. We suggest the existence of two distinct populations of V1 interneurons mediating different ipsilateral and contralateral interactions within the spinal cord. The model proposes explanations for multiple experimental data concerning the effects of optogenetic silencing and activation of V1 interneurons on the frequency of locomotor oscillations in the intact cord and hemicord under different experimental conditions. Our simulations provide an important insight into the organization of locomotor circuitry in the mammalian spinal cord.


Asunto(s)
Neuronas , Médula Espinal , Animales , Simulación por Computador , Interneuronas/fisiología , Mamíferos/fisiología , Médula Espinal/fisiología
14.
J Neurophysiol ; 125(6): 2158-2165, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949892

RESUMEN

Unilateral C2 hemisection (C2SH) disrupts descending inspiratory-related drive to phrenic motor neurons and thus, silences rhythmic diaphragm muscle (DIAm) activity. There is gradual recovery of rhythmic DIAm EMG activity over time post-C2SH, consistent with neuroplasticity, which is enhanced by chronic (2 wk) intrathecal BDNF treatment. In the present study, we hypothesized that acute (30 min) intrathecal BDNF treatment also enhances recovery of DIAm EMG activity after C2SH. Rats were implanted with bilateral DIAm EMG electrodes to verify the absence of ipsilateral eupneic DIAm EMG activity at the time of C2SH and at 3 days post-C2SH. In those animals displaying no recovery of DIAm EMG activity after 28 days (n = 7), BDNF was administered intrathecally (450 mcg) at C4. DIAm EMG activity was measured continuously both before and for 30 min after BDNF treatment, during eupnea, hypoxia-hypercapnia, and spontaneous sighs. Acute BDNF treatment restored eupneic DIAm EMG activity in all treated animals to an amplitude that was 78% ± 9% of pre-C2SH root mean square (RMS) (P < 0.001). In addition, acute BDNF treatment increased DIAm RMS EMG amplitude during hypoxia-hypercapnia (P = 0.023) but had no effect on RMS EMG amplitude during sighs. These results support an acute modulatory role of BDNF signaling on excitatory synaptic transmission at phrenic motor neurons after cervical spinal cord injury.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) plays an important role in promoting neuroplasticity following unilateral C2 spinal hemisection (C2SH). BDNF was administered intrathecally in rats displaying lack of ipsilateral inspiratory-related diaphragm (DIAm) EMG activity after C2SH. Acute BDNF treatment (30 min) restored eupneic DIAm EMG activity in all treated animals to 78% ± 9% of pre-C2SH level. In addition, acute BDNF treatment increased DIAm EMG amplitude during hypoxia-hypercapnia but had no effect on EMG amplitude during sighs.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Médula Cervical/lesiones , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Modelos Animales de Enfermedad , Electromiografía , Inyecciones Espinales , Masculino , Ratas , Ratas Sprague-Dawley
15.
Am J Physiol Heart Circ Physiol ; 320(4): H1738-H1748, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33635166

RESUMEN

Emerging evidence suggests the exercise pressor reflex is exaggerated in early stage type 1 diabetes mellitus (T1DM). Piezo channels may play a role in this exaggeration, as blocking these channels attenuates the exaggerated pressor response to tendon stretch in T1DM rats. However, tendon stretch constitutes a different mechanical and physiological stimuli than that occurring during muscle contraction. Therefore, the purpose of this study was to determine the contribution of Piezo channels in evoking the pressor reflex during an intermittent muscle contraction in T1DM. In unanesthetized decerebrate rats, we compared the pressor and cardioaccelerator responses to intermittent muscle contraction before and after locally injecting grammostola spatulata mechanotoxin 4 (GsMTx-4, 0.25 µM) into the hindlimb vasculature. Although GsMTx-4 has a high potency for Piezo channels, it has also been suggested to block transient receptor potential cation (TRPC) channels. We, therefore, performed additional experiments to control for this possibility by also injecting SKF 96365 (10 µM), a TRPC channel blocker. We found that local injection of GsMTx-4, but not SKF 96365, attenuated the exaggerated peak pressor (ΔMAP before: 33 ± 3 mmHg, after: 22 ± 3 mmHg, P = 0.007) and pressor index (ΔBPi before: 668 ± 91 mmHg·s, after: 418 ± 81 mmHg·s, P = 0.021) response in streptozotocin (STZ) rats (n = 8). GsMTx-4 attenuated the exaggerated early onset pressor and the pressor response over time, which eliminated peak differences as well as those over time between T1DM and healthy controls. These data suggest that Piezo channels are an effective target to normalize the exercise pressor reflex in T1DM.NEW & NOTEWORTHY This is the first study to demonstrate that blocking Piezo channels is effective in ameliorating the exaggerated exercise pressor reflex evoked by intermittent muscle contraction, commonly occurring during physical activity, in T1DM. Thus, these findings suggest Piezo channels may serve as an effective therapeutic target to reduce the acute and prolonged cardiovascular strain that may occur during dynamic exercise in T1DM.


Asunto(s)
Sistema Nervioso Autónomo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Sistema Cardiovascular/inervación , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular/farmacología , Moduladores del Transporte de Membrana/farmacología , Contracción Muscular , Músculo Esquelético/inervación , Reflejo Anormal/efectos de los fármacos , Venenos de Araña/farmacología , Animales , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/fisiopatología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Masculino , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Factores de Tiempo
16.
J Neuroeng Rehabil ; 18(1): 145, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563223

RESUMEN

BACKGROUND: Maintaining upright posture is an unstable task that requires sophisticated neuro-muscular control. Humans use foot-ground interaction forces, characterized by point of application, magnitude, and direction to manage body accelerations. When analyzing the directions of the ground reaction forces of standing humans in the frequency domain, previous work found a consistent pattern in different frequency bands. To test whether this frequency-dependent behavior provided a distinctive signature of neural control or was a necessary consequence of biomechanics, this study simulated quiet standing and compared the results with human subject data. METHODS: Aiming to develop the simplest competent and neuromechanically justifiable dynamic model that could account for the pattern observed across multiple subjects, we first explored the minimum number of degrees of freedom required for the model. Then, we applied a well-established optimal control method that was parameterized to maximize physiologically-relevant insight to stabilize the balancing model. RESULTS: If a standing human was modeled as a single inverted pendulum, no controller could reproduce the experimentally observed pattern. The simplest competent model that approximated a standing human was a double inverted pendulum with torque-actuated ankle and hip joints. A range of controller parameters could stabilize this model and reproduce the general trend observed in experimental data; this result seems to indicate a biomechanical constraint and not a consequence of control. However, details of the frequency-dependent pattern varied substantially across tested control parameter values. The set of parameters that best reproduced the human experimental results suggests that the control strategy employed by human subjects to maintain quiet standing was best described by minimal control effort with an emphasis on ankle torque. CONCLUSIONS: The findings suggest that the frequency-dependent pattern of ground reaction forces observed in quiet standing conveys quantitative information about human control strategies. This study's method might be extended to investigate human neural control strategies in different contexts of balance, such as with an assistive device or in neurologically impaired subjects.


Asunto(s)
Fenómenos Mecánicos , Modelos Biológicos , Articulación del Tobillo , Fenómenos Biomecánicos , Humanos , Equilibrio Postural , Posición de Pie
17.
J Neuroeng Rehabil ; 18(1): 38, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596960

RESUMEN

BACKGROUND: Neuroprosthetic devices controlled by persons with standard limb amputation often lack the dexterity of the physiological limb due to limitations of both the user's ability to output accurate control signals and the control system's ability to formulate dynamic trajectories from those signals. To restore full limb functionality to persons with amputation, it is necessary to first deduce and quantify the motor performance of the missing limbs, then meet these performance requirements through direct, volitional control of neuroprosthetic devices. METHODS: We develop a neuromuscular modeling and optimization paradigm for the agonist-antagonist myoneural interface, a novel tissue architecture and neural interface for the control of myoelectric prostheses, that enables it to generate virtual joint trajectories coordinated with an intact biological joint at full physiologically-relevant movement bandwidth. In this investigation, a baseline of performance is first established in a population of non-amputee control subjects ([Formula: see text]). Then, a neuromuscular modeling and optimization technique is advanced that allows unilateral AMI amputation subjects ([Formula: see text]) and standard amputation subjects ([Formula: see text]) to generate virtual subtalar prosthetic joint kinematics using measured surface electromyography (sEMG) signals generated by musculature within the affected leg residuum. RESULTS: Using their optimized neuromuscular subtalar models under blindfolded conditions with only proprioceptive feedback, AMI amputation subjects demonstrate bilateral subtalar coordination accuracy not significantly different from that of the non-amputee control group (Kolmogorov-Smirnov test, [Formula: see text]) while standard amputation subjects demonstrate significantly poorer performance (Kolmogorov-Smirnov test, [Formula: see text]). CONCLUSIONS: These results suggest that the absence of an intact biological joint does not necessarily remove the ability to produce neurophysical signals with sufficient information to reconstruct physiological movements. Further, the seamless manner in which virtual and intact biological joints are shown to coordinate reinforces the theory that desired movement trajectories are mentally formulated in an abstract task space which does not depend on physical limb configurations.


Asunto(s)
Algoritmos , Miembros Artificiales , Retroalimentación Sensorial/fisiología , Músculo Esquelético/fisiopatología , Desempeño Psicomotor/fisiología , Adulto , Amputación Quirúrgica , Fenómenos Biomecánicos , Electromiografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Movimiento/fisiología , Procesamiento de Señales Asistido por Computador , Interfaz Usuario-Computador
18.
Sensors (Basel) ; 21(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34577394

RESUMEN

The extent to which muscle synergies represent the neural control of human behavior remains unknown. Here, we tested whether certain sets of muscle synergies that are fundamentally necessary across behaviors exist. We measured the electromyographic activities of 26 muscles, including bilateral trunk and lower limb muscles, during 24 locomotion, dynamic and static stability tasks, and we extracted the muscle synergies using non-negative matrix factorization. Our results show that 13 muscle synergies that may have unique functional roles accounted for almost all 24 tasks by combinations of single and/or merging of synergies. Therefore, our results may support the notion of the low dimensionality in motor outputs, in which the central nervous system flexibly recruits fundamental muscle synergies to execute diverse human behaviors. Further studies are required to validate the neural representation of the fundamental components of muscle synergies.


Asunto(s)
Movimiento , Músculo Esquelético , Electromiografía , Humanos , Extremidad Inferior , Postura
19.
Dev Dyn ; 249(10): 1172-1181, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32406963

RESUMEN

Spatially restricted expression of genes by global circulating inducers (hormones, secreted proteins, growth factors, neuromodulators, etc.) was a prerequisite for the evolution of animals. Far from a random occurrence, it is a systematically occurring, certain event, implying that specific information is invested for it to happen. In this minireview, we show for the first time that the expression and regionalization takes place at the level of receptors via a neural mechanism and make an attempt to reconstruct the causal chain from neural signaling to expression of nuclear receptors.


Asunto(s)
Receptores Citoplasmáticos y Nucleares/biosíntesis , Empalme Alternativo , Animales , Encéfalo/metabolismo , Mariposas Diurnas , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Glucocorticoides/metabolismo , Humanos , Manduca , Ratones , Sistema Nervioso , Neuronas/metabolismo , Isoformas de Proteínas , Transducción de Señal
20.
J Physiol ; 598(5): 913-928, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31845330

RESUMEN

Fifty years ago, David Marr and James Albus proposed a computational model of cerebellar cortical function based on the pioneering circuit models described by John Eccles, Masao Ito and Janos Szentagothai. The Marr-Albus model remains one of the most enduring and influential models in computational neuroscience, despite apparent falsification of some of the original predictions. We re-examine the Marr-Albus model in the context of the modern theory of computational neural networks and in the context of expanded interpretations of the connectivity and function of cerebellar cortex within the full motor system. By doing so, we show that the original elements of the codon theory continue to make important predictions for cerebellar mechanism, and we show that evidence appearing to contradict the original model is based on an artificially narrow interpretation of cerebellar structure and motor function.


Asunto(s)
Cerebelo , Modelos Neurológicos , Codón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA