Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.518
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 160(5): 882-892, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723163

RESUMEN

Evolvability­the capacity to generate beneficial heritable variation­is a central property of biological systems. However, its origins and modulation by environmental factors have not been examined systematically. Here, we analyze the fitness effects of all single mutations in TEM-1 ß-lactamase (4,997 variants) under selection for the wild-type function (ampicillin resistance) and for a new function (cefotaxime resistance). Tolerance to mutation in this enzyme is bimodal and dependent on the strength of purifying selection in vivo, a result that derives from a steep non-linear ampicillin-dependent relationship between biochemical activity and fitness. Interestingly, cefotaxime resistance emerges from mutations that are neutral at low levels of ampicillin but deleterious at high levels; thus the capacity to evolve new function also depends on the strength of selection. The key property controlling evolvability is an excess of enzymatic activity relative to the strength of selection, suggesting that fluctuating environments might select for high-activity enzymes.


Asunto(s)
Resistencia a la Ampicilina , Cefotaxima/farmacología , Evolución Molecular Dirigida , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , beta-Lactamasas/genética , Ampicilina/farmacología , Escherichia coli/enzimología , Aptitud Genética , Mutación , Resistencia betalactámica , beta-Lactamasas/química
2.
Proc Natl Acad Sci U S A ; 120(3): e2209043119, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634144

RESUMEN

The emergence of antibiotic tolerance (prolonged survival against exposure) in natural bacterial populations is a major concern. Since it has been studied primarily in isogenic populations, we do not yet understand how ecological interactions in a diverse community impact the evolution of tolerance. To address this, we studied the evolutionary dynamics of a synthetic bacterial community composed of two interacting strains. In this community, an antibiotic-resistant strain protected the other, susceptible strain by degrading the antibiotic ampicillin in the medium. Surprisingly, we found that in the presence of antibiotics, the susceptible strain evolved tolerance. Tolerance was typified by an increase in survival as well as an accompanying decrease in the growth rate, highlighting a trade-off between the two. A simple mathematical model explained that the observed decrease in the death rate, even when coupled with a decreased growth rate, is beneficial in a community with weak protective interactions. In the presence of strong interactions, the model predicted that the trade-off would instead be detrimental, and tolerance would not emerge, which we experimentally verified. By whole genome sequencing the evolved tolerant isolates, we identified two genetic hot spots which accumulated mutations in parallel lines, suggesting their association with tolerance. Our work highlights that ecological interactions can promote antibiotic tolerance in bacterial communities, which has remained understudied.


Asunto(s)
Ampicilina , Antibacterianos , Antibacterianos/farmacología , Ampicilina/farmacología , Bacterias/genética , Mutación , Tolerancia Inmunológica , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética
3.
J Biol Chem ; 299(5): 104630, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963495

RESUMEN

CTX-M ß-lactamases are a widespread source of resistance to ß-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 ß-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A ß-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.


Asunto(s)
Dominio Catalítico , Cefalosporinas , Resistencia a Medicamentos , Escherichia coli , beta-Lactamasas , Ampicilina/metabolismo , Ampicilina/farmacología , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Catálisis , Dominio Catalítico/genética , Cefotaxima/metabolismo , Cefotaxima/farmacología , Cefalosporinas/metabolismo , Cefalosporinas/farmacología , Resistencia a Medicamentos/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Mutagénesis , Penicilinas/metabolismo , Penicilinas/farmacología , beta-Lactamas/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína
4.
BMC Genomics ; 25(1): 178, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355437

RESUMEN

BACKGROUND: Acute Hepatopancreatic Necrosis Disease (AHPND) causes significant mortality in shrimp aquaculture. The infection is primarily instigated by Vibrio parahaemolyticus (Vp) strains carrying a plasmid encoding the binary toxin PirAB. Yet, comprehension of supplementary virulence factors associated with this relatively recent disease remains limited. Furthermore, the same holds for gastroenteritis in humans caused by other Vp genotypes. Additionally, given the prevalent use of antibiotics to combat bacterial infections, it becomes imperative to illuminate the presence of antimicrobial resistance genes within these bacteria. RESULTS: A subsampled number of 1,036 Vp genomes was screened for the presence of antimicrobial resistance genes, revealing an average prevalence of 5 ± 2 (SD) genes. Additional phenotypic antimicrobial susceptibility testing of three Vp strains (M0904, TW01, and PV1) sequenced in this study demonstrated resistance to ampicillin by all tested strains. Additionally, Vp M0904 showed multidrug resistance (against ampicillin, tetracycline, and trimethoprim-sulfamethoxazole). With a focus on AHPND, a screening of all Vibrio spp. for the presence of pirA and/or pirB indicates an estimated prevalence of 0.6%, including four V. campbellii, four V. owensii, and a Vibrio sp. next to Vp. Their pirAB-encoding plasmids exhibited a highly conserved backbone, with variations primarily in the region of the Tn3 family transposase. Furthermore, an assessment of the subsampled Vp genomes for the presence of known virulence factors showed a correlation between the presence of the Type 3 Secretion System 2 and tdh, while the presence of the Type 6 Secretion System 1 was clade dependent. Furthermore, a genome-wide association study (GWAS) unveiled (new) genes associated with pirA, pirB, tdh, and trh genotypes. Notable associations with the pirAB genotype included outer membrane proteins, immunoglobulin-like domain containing proteins, and toxin-antitoxin systems. For the tdh + /trh + genotypes (containing tdh, trh, or both genes), associations were found with T3SS2 genes, urease-related genes and nickel-transport system genes, and genes involved in a 'minimal' type I-F CRISPR mechanism. CONCLUSIONS: This study highlights the prevalence of antimicrobial resistance and virulence genes in Vp, identifying novel genetic markers associated with AHPND and tdh + /trh + genotypes. These findings contribute valuable insights into the genomic basis of these genotypes, with implications for shrimp aquaculture and food safety.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Humanos , Animales , Vibrio parahaemolyticus/genética , Antibacterianos/farmacología , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Prevalencia , Farmacorresistencia Bacteriana/genética , Genómica , Genotipo , Factores de Virulencia/genética , Ampicilina , Necrosis , Penaeidae/genética , Penaeidae/microbiología
5.
BMC Genomics ; 25(1): 287, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500034

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) remains a significant global health threat particularly impacting low- and middle-income countries (LMICs). These regions often grapple with limited healthcare resources and access to advanced diagnostic tools. Consequently, there is a pressing need for innovative approaches that can enhance AMR surveillance and management. Machine learning (ML) though underutilized in these settings, presents a promising avenue. This study leverages ML models trained on whole-genome sequencing data from England, where such data is more readily available, to predict AMR in E. coli, targeting key antibiotics such as ciprofloxacin, ampicillin, and cefotaxime. A crucial part of our work involved the validation of these models using an independent dataset from Africa, specifically from Uganda, Nigeria, and Tanzania, to ascertain their applicability and effectiveness in LMICs. RESULTS: Model performance varied across antibiotics. The Support Vector Machine excelled in predicting ciprofloxacin resistance (87% accuracy, F1 Score: 0.57), Light Gradient Boosting Machine for cefotaxime (92% accuracy, F1 Score: 0.42), and Gradient Boosting for ampicillin (58% accuracy, F1 Score: 0.66). In validation with data from Africa, Logistic Regression showed high accuracy for ampicillin (94%, F1 Score: 0.97), while Random Forest and Light Gradient Boosting Machine were effective for ciprofloxacin (50% accuracy, F1 Score: 0.56) and cefotaxime (45% accuracy, F1 Score:0.54), respectively. Key mutations associated with AMR were identified for these antibiotics. CONCLUSION: As the threat of AMR continues to rise, the successful application of these models, particularly on genomic datasets from LMICs, signals a promising avenue for improving AMR prediction to support large AMR surveillance programs. This work thus not only expands our current understanding of the genetic underpinnings of AMR but also provides a robust methodological framework that can guide future research and applications in the fight against AMR.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Ampicilina , Cefotaxima , Aprendizaje Automático , Nigeria
6.
EMBO J ; 39(20): e104231, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882062

RESUMEN

Bile salts are secreted into the gastrointestinal tract to aid in the absorption of lipids. In addition, bile salts show potent antimicrobial activity in part by mediating bacterial protein unfolding and aggregation. Here, using a protein folding sensor, we made the surprising discovery that the Escherichia coli periplasmic glycerol-3-phosphate (G3P)-binding protein UgpB can serve, in the absence of its substrate, as a potent molecular chaperone that exhibits anti-aggregation activity against bile salt-induced protein aggregation. The substrate G3P, which is known to accumulate in the later compartments of the digestive system, triggers a functional switch between UgpB's activity as a molecular chaperone and its activity as a G3P transporter. A UgpB mutant unable to bind G3P is constitutively active as a chaperone, and its crystal structure shows that it contains a deep surface groove absent in the G3P-bound wild-type UgpB. Our work illustrates how evolution may be able to convert threats into signals that first activate and then inactivate a chaperone at the protein level in a manner that bypasses the need for ATP.


Asunto(s)
Bilis/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glicerofosfatos/metabolismo , Chaperonas Moleculares/metabolismo , Ampicilina/farmacología , Proteínas Portadoras/genética , Dicroismo Circular , Cristalografía por Rayos X , Elementos Transponibles de ADN/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Concentración de Iones de Hidrógeno , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Conformación Molecular , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteoma/metabolismo
7.
Ann Surg ; 279(4): 640-647, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38099477

RESUMEN

OBJECTIVE: To assess the effect of antimicrobial prophylaxis with ampicillin-sulbactam (ABPC/SBT) compared with cefazolin (CEZ) on the short-term outcomes after esophagectomy. BACKGROUND: CEZ is widely used for antimicrobial prophylaxis in esophagectomy without procedure-specific evidence, whereas ABPC/SBT is preferred in some hospitals to target both aerobic and anaerobic oral bacteria. METHODS: Data of patients who underwent esophagectomy for cancer between July 2010 and March 2019 were extracted from a nationwide Japanese inpatient database. Overlap propensity score weighting was conducted to compare the short-term outcomes [including surgical site infection (SSI), anastomotic leakage, and respiratory failure] between antimicrobial prophylaxis with CEZ and ABPC/SBT after adjusting for potential confounders. Sensitivity analyses were also performed using propensity score matching and instrumental variable analyses. RESULTS: Among 17,772 eligible patients, 16,077 (90.5%) and 1695 (9.5%) patients were administered CEZ and ABPC/SBT, respectively. SSI, anastomotic leakage, and respiratory failure occurred in 2971 (16.7%), 2604 (14.7%), and 2754 patients (15.5%), respectively. After overlap weighting, ABPC/SBT was significantly associated with a reduction in SSI [odds ratio 0.51 (95% CI: 0.43-0.60)], anastomotic leakage [0.51 (0.43-0.61)], and respiratory failure [0.66 (0.57-0.77)]. ABPC/SBT was also associated with reduced respiratory complications, postoperative length of stay, and total hospitalization costs. The proportion of Clostridioides difficile colitis and noninfectious complications did not differ between the groups. Propensity score matching and instrumental variable analyses demonstrated equivalent results. CONCLUSIONS: The administration of ABPC/SBT as antimicrobial prophylaxis for esophagectomy was associated with better short-term postoperative outcomes compared with CEZ.


Asunto(s)
Antiinfecciosos , Insuficiencia Respiratoria , Humanos , Cefazolina/uso terapéutico , Japón , Pacientes Internos , Fuga Anastomótica , Esofagectomía , Ampicilina/uso terapéutico , Sulbactam/uso terapéutico , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/prevención & control , Infección de la Herida Quirúrgica/tratamiento farmacológico
8.
Biochem Biophys Res Commun ; 714: 149974, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663094

RESUMEN

Due to the rapid emergence of antibiotic resistant new bacterial strains and new infections, there is an urgent need for novel or newly modified and efficient alternatives of treatment. However, conventional antibiotics are still used in therapeutic settings but their efficacy is uncertain due to the rapid evolution of drug resistance. In the present study, we have synthesized a new derivative of conventional antibiotic ampicillin using SN2-type substitution reaction. NMR and mass analysis of the newly synthesized derivative of ampicillin confirmed it as ampicillin-bromo-methoxy-tetralone (ABMT). Importantly, ABMT is revealed to have efficient activity against Staphylococcus aureus (S. aureus) with a MIC value of 32 µg ml-1 while ampicillin was not effective, even at 64 µg ml-1 of concentration. Electron microscopy results confirmed the membrane-specific killing of S. aureus at 1 h of treatment. Additionally, molecular docking analysis revealed a strong binding affinity of ABMT with ß-lactamase via the formation of a closed compact bridge. Our findings, avail a new derivative of ampicillin that could be a potential alternative to fight ampicillin-resistant bacteria possibly by neutralizing the ß-lactamase action.


Asunto(s)
Ampicilina , Antibacterianos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Staphylococcus aureus , Ampicilina/farmacología , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Tetralonas/farmacología , Tetralonas/química , Tetralonas/síntesis química , Resistencia a la Ampicilina , beta-Lactamasas/metabolismo
9.
Biochem Biophys Res Commun ; 710: 149859, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581948

RESUMEN

Penicillin-binding protein 2 (PBP2) plays a key role in the formation of peptidoglycans in bacterial cell walls by crosslinking glycan chains through transpeptidase activity. PBP2 is also found in Campylobacter jejuni, a pathogenic bacterium that causes food-borne enteritis in humans. To elucidate the essential structural features of C. jejuni PBP2 (cjPBP2) that mediate its biological function, we determined the crystal structure of cjPBP2 and assessed its protein stability under various conditions. cjPBP2 adopts an elongated two-domain structure, consisting of a transpeptidase domain and a pedestal domain, and contains typical active site residues necessary for transpeptidase activity, as observed in other PBP2 proteins. Moreover, cjPBP2 responds to ß-lactam antibiotics, including ampicillin, cefaclor, and cefmetazole, suggesting that ß-lactam antibiotics inactivate cjPBP2. In contrast to typical PBP2 proteins, cjPBP2 is a rare example of a Zn2+-binding PBP2 protein, as the terminal structure of its transpeptidase domain accommodates a Zn2+ ion via three cysteine residues and one histidine residue. Zn2+ binding helps improve the protein stability of cjPBP2, providing opportunities to develop new C. jejuni-specific antibacterial drugs that counteract the Zn2+-binding ability of cjPBP2.


Asunto(s)
Campylobacter jejuni , Peptidil Transferasas , Humanos , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Antibacterianos/farmacología , Ampicilina/farmacología , Proteínas Bacterianas
10.
J Mol Recognit ; 37(5): e3100, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014869

RESUMEN

Metallo-ß-lactamases (MßLs) hydrolyze and inactivate ß-lactam antibiotics, are a pivotal mechanism conferring resistance against bacterial infections. SMB-1, a novel B3 subclass of MßLs from Serratia marcescens could deactivate almost all ß-lactam antibiotics including ampicillin (AMP), which has posed a serious threat to public health. To illuminate the mechanism of recognition and interaction between SMB-1 and AMP, various fluorescence spectroscopy techniques and molecular dynamics simulation were employed. The results of quenching spectroscopy unraveled that AMP could make SMB-1 fluorescence quenching that mechanism was the static quenching; the synchronous and three-dimensional fluorescence spectra validated that the microenvironment and conformation of SMB-1 were altered after interaction with AMP. The molecular dynamics results demonstrated that the whole AMP enters the binding pocket of SMB-1, even though with a relatively bulky R1 side chain. Loop1 and loop2 in SMB-1 undergo significant fluctuations, and α2 (71-73) and local α5 (186-188) were turned into random coils, promoting zinc ion exposure consistent with circular dichroism spectroscopy results. The binding between them was driven by a combination of enthalpy and entropy changes, which was dominated by electrostatic force in agreement with the fluorescence observations. The present study brings structural insights and solid foundations for the design of new substrates for ß-lactamases and the development of effective antibiotics that are resistant to superbugs.


Asunto(s)
Ampicilina , Simulación de Dinámica Molecular , Serratia marcescens , Espectrometría de Fluorescencia , beta-Lactamasas , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Ampicilina/química , Ampicilina/metabolismo , Ampicilina/farmacología , Serratia marcescens/enzimología , Unión Proteica , Sitios de Unión , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
11.
J Antimicrob Chemother ; 79(9): 2227-2236, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39031073

RESUMEN

BACKGROUND: Sulbactam dosing for Acinetobacter baumannii infections has not been standardized due to limited available pharmacokinetics/pharmacodynamics (PK/PD) data. Herein, we report a comprehensive PK/PD analysis of ampicillin-sulbactam against A. baumannii pneumonia. METHODS: Twenty-one A. baumannii clinical isolates were tested in the neutropenic murine pneumonia model. For dose-ranging studies, groups of mice were administered escalating doses of ampicillin-sulbactam. Changes in log10cfu/lungs relative to 0 h were assessed. Dose-fractionation studies were performed. Estimates of the percentage of of time during which the unbound plasma sulbactam concentrations exceeded the MIC (%fT > MIC) required for different efficacy endpoints were calculated. The probabilities of target attainment (PTA) for the 1-log kill plasma targets were estimated following clinically utilized sulbactam regimens. RESULTS: Dose-fractionation studies demonstrated time-dependent kill. Isolates resistant to both sulbactam and meropenem required three times the exposures to achieve 1-log kill; median [IQR] %fT > MIC of 60.37% [51.6-66.8] compared with other phenotypes (21.17 [16.0-32.9] %fT > MIC). Sulbactam standard dose (1 g q6h, 0.5 h infusion) provided >90% PTA up to MIC of 4 mg/L. Sulbactam 3 g q8h, 4 h inf provided greater PTA for isolates with sulbactam-intermediate susceptibility (8 mg/L, 100% versus 86% following the standard dose). Despite the higher exposure following 3 g q8h, 4 h inf, PTA was ≤57% among sulbactam-resistant/meropenem-resistant isolates. CONCLUSION: Sulbactam standard dose is a valuable regimen across sulbactam-susceptible isolates while the high-dose extended-infusion provides additional benefit against sulbactam-intermediate isolates. Given that most of the sulbactam-resistant A. baumannii isolates are meropenem-resistant, high-dose prolonged-infusion regimens are not expected to be effective as monotherapy against infections due to these isolates.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Ampicilina , Antibacterianos , Pruebas de Sensibilidad Microbiana , Sulbactam , Acinetobacter baumannii/efectos de los fármacos , Sulbactam/farmacocinética , Sulbactam/administración & dosificación , Sulbactam/farmacología , Sulbactam/uso terapéutico , Antibacterianos/farmacocinética , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Animales , Ampicilina/farmacocinética , Ampicilina/administración & dosificación , Ampicilina/farmacología , Ratones , Femenino , Modelos Animales de Enfermedad , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Humanos
12.
J Antimicrob Chemother ; 79(4): 801-809, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334390

RESUMEN

OBJECTIVES: To investigate the genomic diversity and ß-lactam susceptibilities of Enterococcus faecalis collected from patients with infective endocarditis (IE). METHODS: We collected 60 contemporary E. faecalis isolates from definite or probable IE cases identified between 2018 and 2021 at the University of Pittsburgh Medical Center. We used whole-genome sequencing to study bacterial genomic diversity and employed antibiotic checkerboard assays and a one-compartment pharmacokinetic-pharmacodynamic (PK/PD) model to investigate bacterial susceptibility to ampicillin and ceftriaxone both alone and in combination. RESULTS: Genetically diverse E. faecalis were collected, however, isolates belonging to two STs, ST6 and ST179, were collected from 21/60 (35%) IE patients. All ST6 isolates encoded a previously described mutation upstream of penicillin-binding protein 4 (pbp4) that is associated with pbp4 overexpression. ST6 isolates had higher ceftriaxone MICs and higher fractional inhibitory concentration index values for ampicillin and ceftriaxone (AC) compared to other isolates, suggesting diminished in vitro AC synergy against this lineage. Introduction of the pbp4 upstream mutation found among ST6 isolates caused increased ceftriaxone resistance in a laboratory E. faecalis isolate. PK/PD testing showed that a representative ST6 isolate exhibited attenuated efficacy of AC combination therapy at humanized antibiotic exposures. CONCLUSIONS: We find evidence for diminished in vitro AC activity among a subset of E. faecalis IE isolates with increased pbp4 expression. These findings suggest that alternate antibiotic combinations against diverse contemporary E. faecalis IE isolates should be evaluated.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Infecciones por Bacterias Grampositivas , Humanos , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Enterococcus faecalis , Ampicilina/farmacología , Ampicilina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Endocarditis Bacteriana/tratamiento farmacológico , Endocarditis Bacteriana/microbiología , Endocarditis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Quimioterapia Combinada
13.
J Antimicrob Chemother ; 79(2): 403-411, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153239

RESUMEN

BACKGROUND: Streptococcus suis is an important pig pathogen and an emerging zoonotic agent. In a previous study, we described a high proportion of penicillin-resistant serotype 9 S. suis (SS9) isolates on pig farms in Italy. OBJECTIVES: We hypothesized that resistance to penicillin emerged in some SS9 lineages characterized by substitutions at the PBPs, contributing to the successful spread of these lineages in the last 20 years. METHODS: Sixty-six SS9 isolates from cases of streptococcosis in pigs were investigated for susceptibility to penicillin, ceftiofur and ampicillin. The isolates were characterized for ST, virulence profile, and antimicrobial resistance genes through WGS. Multiple linear regression models were employed to investigate the associations between STs, year of isolation, substitutions at the PBPs and an increase in MIC values to ß-lactams. RESULTS: MIC values to penicillin increased by 4% each year in the study period. Higher MIC values for penicillin were also positively associated with ST123, ST1540 and ST1953 compared with ST16. The PBP sequences presented a mosaic organization of blocks. Within the same ST, substitutions at the PBPs were generally more frequent in recent isolates. Resistance to penicillin was driven by substitutions at PBP2b, including K479T, D512E and K513E, and PBP2x, including T551S, while reduced susceptibility to ceftiofur and ampicillin were largely dependent on substitutions at PBP2x. CONCLUSIONS: Here, we identify the STs and substitutions at the PBPs responsible for increased resistance of SS9 to penicillin on Italian pig farms. Our data highlight the need for monitoring the evolution of S. suis in the coming years.


Asunto(s)
Aminoaciltransferasas , Cefalosporinas , Streptococcus suis , Animales , Porcinos , Penicilinas/farmacología , Proteínas de Unión a las Penicilinas/genética , Streptococcus suis/genética , Proteínas Bacterianas/genética , Streptococcus pneumoniae/genética , Serogrupo , Aminoaciltransferasas/genética , Pruebas de Sensibilidad Microbiana , Resistencia a las Penicilinas/genética , Genómica , Ampicilina , Células Clonales , Antibacterianos/farmacología
14.
Int J Med Microbiol ; 316: 151626, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38954914

RESUMEN

BACKGROUND: Aminopenicillins are recommended agents for non-invasive Haemophilus influenzae infections. One of the mechanisms of resistance to ß-lactams is the alteration of the transpeptidase region of penicillin binding protein 3 (PBP3) which is caused by mutations in the ftsI gene. It was shown that exposure to beta-lactams has a stimulating effect on increase of prevalence of H. influenzae strains with the non-enzymatic mechanism of resistance. OBJECTIVES: The aim of our study was to compare the mutational potential of ampicillin and cefuroxime in H. influenzae strains, determination of minimum inhibitory concentration and the evolution of mutations over time, focusing on amino acid substitutions in PBP3. METHODS: 30 days of serial passaging of strains in liquid broth containing increasing concentrations of ampicillin or cefuroxime was followed by whole-genome sequencing. RESULTS: On average, cefuroxime increased the minimum inhibitory concentration more than ampicillin. The minimum inhibitory concentration was increased by a maximum of 32 fold. Substitutions in the PBP3 started to appear after 15 days of passaging. In PBP3, cefuroxime caused different substitutions than ampicillin. CONCLUSIONS: Our experiment observed differences in mutation selection by ampicillin and cefuroxime. Selection pressure of antibiotics in vitro generated substitutions that do not occur in clinical strains in the Czech Republic.


Asunto(s)
Sustitución de Aminoácidos , Ampicilina , Antibacterianos , Cefuroxima , Haemophilus influenzae , Pruebas de Sensibilidad Microbiana , Mutación , Proteínas de Unión a las Penicilinas , Cefuroxima/farmacología , Ampicilina/farmacología , Haemophilus influenzae/genética , Haemophilus influenzae/efectos de los fármacos , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Antibacterianos/farmacología , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Haemophilus/microbiología , Secuenciación Completa del Genoma , Evolución Molecular , Selección Genética , Pase Seriado
15.
Mol Syst Biol ; 19(4): e11320, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36866643

RESUMEN

Bacteria can survive antibiotics by forming dormant, drug-tolerant persisters. Persisters can resuscitate from dormancy after treatment and prolong infections. Resuscitation is thought to occur stochastically, but its transient, single-cell nature makes it difficult to investigate. We tracked the resuscitation of individual persisters by microscopy after ampicillin treatment and, by characterizing their dynamics, discovered that Escherichia coli and Salmonella enterica persisters resuscitate exponentially rather than stochastically. We demonstrated that the key parameters controlling resuscitation map to the ampicillin concentration during treatment and efflux during resuscitation. Consistently, we observed many persister progeny have structural defects and transcriptional responses indicative of cellular damage, for both ß-lactam and quinolone antibiotics. During resuscitation, damaged persisters partition unevenly, generating both healthy daughter cells and defective ones. This persister partitioning phenomenon was observed in S. enterica, Klebsiella pneumoniae, Pseudomonas aeruginosa, and an E. coli urinary tract infection (UTI) isolate. It was also observed in the standard persister assay and after in situ treatment of a clinical UTI sample. This study reveals novel properties of resuscitation and indicates that persister partitioning may be a survival strategy in bacteria that lack genetic resistance.


Asunto(s)
Antibacterianos , Escherichia coli , Escherichia coli/genética , Ampicilina , Bacterias
16.
BMC Microbiol ; 24(1): 127, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627609

RESUMEN

BACKGROUND: In Ethiopia, milk production and handling practices often lack proper hygiene measures, leading to the potential contamination of milk and milk products with Staphylococcus aureus (S. aureus), including methicillin-resistant strains, posing significant public health concerns. This study aimed to investigate the occurrence, antimicrobial susceptibility profiles and presence of resistance genes in S. aureus strains isolated from milk and milk products. METHODS: A cross-sectional study was conducted in the Arsi highlands, Oromia, Ethiopia from March 2022 to February 2023. A total of 503 milk and milk product samples were collected, comprising 259 raw milk, 219 cottage cheese, and 25 traditional yogurt samples. S. aureus isolation and coagulase-positive staphylococci enumeration were performed using Baird-Parker agar supplemented with tellurite and egg yolk. S. aureus was further characterized based on colony morphology, Gram stain, mannitol fermentation, catalase test, and coagulase test. Phenotypic antimicrobial resistance was assessed using the Kirby-Bauer disc diffusion method, while the polymerase chain reaction (PCR) was employed for confirming the presence of S. aureus and detecting antimicrobial resistance genes. RESULTS: S. aureus was detected in 24.9% of the milk and milk products, with the highest occurrence in raw milk (40.9%), followed by yogurt (20%), and cottage cheese (6.4%). The geometric mean for coagulase-positive staphylococci counts in raw milk, yogurt, and cottage cheese was 4.6, 3.8, and 3.2 log10 CFU/mL, respectively. Antimicrobial resistance analysis revealed high levels of resistance to ampicillin (89.7%) and penicillin G (87.2%), with 71.8% of the isolates demonstrating multidrug resistance. Of the 16 S. aureus isolates analyzed using PCR, all were found to carry the nuc gene, with the mecA and blaZ genes detected in 50% of these isolates each. CONCLUSION: This study revealed the widespread distribution of S. aureus in milk and milk products in the Arsi highlands of Ethiopia. The isolates displayed high resistance to ampicillin and penicillin, with a concerning level of multidrug resistance. The detection of the mecA and blaZ genes in selected isolates is of particular concern, highlighting a potential public health hazard and posing a challenge to effective antimicrobial treatment. These findings highlight the urgent need to enhance hygiene standards in milk and milk product handling and promote the rational use of antimicrobial drugs. Provision of adequate training for all individuals involved in the dairy sector can help minimize contamination. These measures are crucial in addressing the threats posed by S. aureus, including methicillin-resistant strains, and ensuring the safety of milk and its products for consumers.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Animales , Staphylococcus aureus , Leche , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/genética , Coagulasa/genética , Etiopía , Estudios Transversales , Infecciones Estafilocócicas/epidemiología , Staphylococcus , Antiinfecciosos/farmacología , Ampicilina/farmacología , Pruebas de Sensibilidad Microbiana
17.
BMC Microbiol ; 24(1): 229, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943061

RESUMEN

BACKGROUND: Lactobacillus plantarum has been found to play a significant role in maintaining the balance of intestinal flora in the human gut. However, it is sensitive to commonly used antibiotics and is often incidentally killed during treatment. We attempted to identify a means to protect L. plantarum ATCC14917 from the metabolic changes caused by two commonly used antibiotics, ampicillin, and doxycycline. We examined the metabolic changes under ampicillin and doxycycline treatment and assessed the protective effects of adding key exogenous metabolites. RESULTS: Using metabolomics, we found that under the stress of ampicillin or doxycycline, L. plantarum ATCC14917 exhibited reduced metabolic activity, with purine metabolism a key metabolic pathway involved in this change. We then screened the key biomarkers in this metabolic pathway, guanine and adenosine diphosphate (ADP). The exogenous addition of each of these two metabolites significantly reduced the lethality of ampicillin and doxycycline on L. plantarum ATCC14917. Because purine metabolism is closely related to the production of reactive oxygen species (ROS), the results showed that the addition of guanine or ADP reduced intracellular ROS levels in L. plantarum ATCC14917. Moreover, the killing effects of ampicillin and doxycycline on L. plantarum ATCC14917 were restored by the addition of a ROS accelerator in the presence of guanine or ADP. CONCLUSIONS: The metabolic changes of L. plantarum ATCC14917 under antibiotic treatments were determined. Moreover, the metabolome information that was elucidated can be used to help L. plantarum cope with adverse stress, which will help probiotics become less vulnerable to antibiotics during clinical treatment.


Asunto(s)
Ampicilina , Antibacterianos , Doxiciclina , Lactobacillus plantarum , Metabolómica , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/efectos de los fármacos , Antibacterianos/farmacología , Ampicilina/farmacología , Doxiciclina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Purinas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Adenosina Difosfato/metabolismo , Humanos
18.
Microb Pathog ; 186: 106501, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38122875

RESUMEN

Antibiotic resistance is a critical topic worldwide with important consequences for public health. So considering the rising issue of antibiotic-resistance in bacteria, we explored the impact of nitrogen and phosphorus eutrophication on drug resistance mechanisms in Enterococcus faecalis, especially ciprofloxacin, oxytetracycline, and ampicillin. For this purpose we examined the antibiotic-resistance genes and biofilm formation of Enterococcus faecalis under different concentration of nitrogen and phosphorus along with mentioned antibiotics. Mesocosms were designed to evaluate the impact of influence of eutrophication on the underlying mechanism of drugn resistence in Enterococcus faecalis. For this purpose, we explored the potential relation to biofilm formation, adhesion ability, and the expression levels of the regulatory gene fsrA and the downstream gene gelEI. Our results demonstrated that the isolates of all treatments displayed high biofilm forming potential, and fsrA and gelE genes expression. Additionally, the experimental group demonstrated substantially elevated Enterococcus faecalis gelE expression. Crystal violet staining was applied to observe biofilm formation during bacterial development phase and found higher biofilm formation. In conclusion, our data suggest that E. faecalis resistance to ciprofloxacin, oxytetracycline, and ampicillin is related to biofilm development. Also, the high level of resistance in Enterococcus faecalis is linked to the expression of the fsrA and gelE genes. Understanding these pathways is vital in tackling the rising problem of bacterial resistance and its potential effect on human health.


Asunto(s)
Enterococcus faecalis , Oxitetraciclina , Humanos , Fósforo , Oxitetraciclina/farmacología , Nitrógeno , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Biopelículas , Ampicilina/farmacología , Ciprofloxacina/farmacología
19.
Anal Biochem ; 687: 115459, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38182031

RESUMEN

The combination of nanomaterials possessing distinct characteristics and the precision of aptamers facilitates the creation of biosensors that exhibit exceptional selectivity and sensitivity. In this manuscript, we present a highly sensitive aptasensor that utilizes the distinctive characteristics of MnO2 nanoflowers and gold nanoparticles to selectively detect ampicillin (AMP). In this aptasensor, the mechanism of signal change is attributed to the difference in the oxidase-mimicking activity of MnO2 nanoflowers in the presence of a free sequence. The inclusion of AMP hindered the creation of a double-stranded DNA configuration through its binding to the aptamer, resulting in an observable alteration in absorbance. The relative absorbance varied linearly with the concentration of AMP in the range of 70 pM to 10 nM with a detection limit of 21.7 pM. In general, the colorimetric aptasensor that has been developed exhibits exceptional selectivity and remarkable stability. It also demonstrates favorable performance in human serum, making it a highly reliable diagnostic tool. Additionally, its versatility is noteworthy as it holds great potential for detecting various antibiotics present in complex samples by merely replacing the utilized sequences with new ones.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Oro , Límite de Detección , Colorimetría/métodos , Compuestos de Manganeso , Óxidos , Técnicas Biosensibles/métodos , Ampicilina
20.
PLoS Comput Biol ; 19(6): e1011232, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37327241

RESUMEN

Antibiotic resistance poses mounting risks to human health, as current antibiotics are losing efficacy against increasingly resistant pathogenic bacteria. Of particular concern is the emergence of multidrug-resistant strains, which has been rapid among Gram-negative bacteria such as Escherichia coli. A large body of work has established that antibiotic resistance mechanisms depend on phenotypic heterogeneity, which may be mediated by stochastic expression of antibiotic resistance genes. The link between such molecular-level expression and the population levels that result is complex and multi-scale. Therefore, to better understand antibiotic resistance, what is needed are new mechanistic models that reflect single-cell phenotypic dynamics together with population-level heterogeneity, as an integrated whole. In this work, we sought to bridge single-cell and population-scale modeling by building upon our previous experience in "whole-cell" modeling, an approach which integrates mathematical and mechanistic descriptions of biological processes to recapitulate the experimentally observed behaviors of entire cells. To extend whole-cell modeling to the "whole-colony" scale, we embedded multiple instances of a whole-cell E. coli model within a model of a dynamic spatial environment, allowing us to run large, parallelized simulations on the cloud that contained all the molecular detail of the previous whole-cell model and many interactive effects of a colony growing in a shared environment. The resulting simulations were used to explore the response of E. coli to two antibiotics with different mechanisms of action, tetracycline and ampicillin, enabling us to identify sub-generationally-expressed genes, such as the beta-lactamase ampC, which contributed greatly to dramatic cellular differences in steady-state periplasmic ampicillin and was a significant factor in determining cell survival.


Asunto(s)
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacología , Escherichia coli/fisiología , Ampicilina/farmacología , Tetraciclina/farmacología , beta-Lactamasas , Farmacorresistencia Microbiana/genética , Bacterias , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA